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Abstract

Background: Presently melanoma still lacks adequate treatment options for metastatic disease. While melanoma is
exceptionally challenging to standard regimens, it is suited for treatment with immunotherapy based on its
immunogenicity. Since treatment-related skin depigmentation is considered a favourable prognostic sign during melanoma
intervention, we here aimed at the reverse approach of directly inducing vitiligo as a shortcut to effective anti-melanoma
immunity.

Methodology and Principal Findings: We developed an effective and simple to use form of immunotherapy by combining
the topical skin-bleaching agent monobenzone with immune-stimulatory imiquimod cream and cytosine-guanine
oligodeoxynucleotides (CpG) injections (MIC therapy). This powerful new approach promptly induced a melanoma antigen-
specific immune response, which abolished subcutaneous B16.F10 melanoma growth in up to 85% of C57BL/6 mice.
Importantly, this regimen induced over 100 days of tumor-free survival in up to 60% of the mice, and forcefully suppressed
tumor growth upon re-challenge either 65- or 165 days after MIC treatment cessation.

Conclusions: MIC therapy is effective in eradicating melanoma, by vigilantly incorporating NK-, B- and T cells in its
therapeutic effect. Based on these results, the MIC regimen presents a high-yield, low-cost and simple therapy, readily
applicable in the clinic.
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Introduction

Melanoma patients could benefit greatly from immunotherapy,

since melanoma is one of the most immunogenic tumors [1] and

metastatic disease responds poorly to conventional therapy, such

as irradiation and chemotherapy [2]. Cancer immunotherapy

underwent considerable progress in recent years, since the first

promising results of adjuvant immune stimulation using interfer-

on-a (IFN-a) and interleukin-2 (IL-2) [3–6]. Recent immunother-

apeutic vaccination strategies have appeared moderately effective

in achieving superior clinical results than standard interventions

[7–9]. Nonetheless, studies using the toll-like receptor (TLR)

ligand cytosine-guanine oligodeoxynucleotides (CpG) as a TLR9

agonist or imiquimod as a TLR7 agonist in the melanoma setting

[10–17], have shown encouraging results. Successful melanoma

immunotherapy can lead to treatment-related vitiligo-like leuko-

derma as an autoimmune side-effect [18], which is considered an

encouraging prognostic sign [19,20]. Therefore, as a reverse

approach, we here investigated the active induction of vitiligo as

an immunotherapy approach for melanoma treatment.

Skin contact with phenols or catechols, such as the mono-

benzylether of hydroquinone (MBEH or monobenzone), induces

depigmentation in susceptible individuals upon occupational

exposure, which is clinically and histologically indistinguishable

from vitiligo vulgaris [21–24]. Monobenzone is the most potent

skin depigmenting agent [21], discovered by Oliver et al. in 1939

[23]. In healthy individuals who have applied it to initially lighten

their skin tone it is known to induce vitiligo vulgaris [25–27].

Moreover, it has been used in a 20% cream for patients with

vitiligo universalis to induce complete depigmentation [27]. The

skin depigmentation spreads to distant sites unexposed to

monobenzone, indicating that monobenzone induces a progressive

systemic reaction against melanocytes, by acting as a skin sensitizer

[26,28,29]. Monobenzone specifically interacts with tyrosinase
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[21,30], the key enzyme in melanocyte pigment synthesis, and

forms quinone-haptens to the tyrosinase protein [31]. Quinone

metabolites of phenols or catechols have been shown to induce

extensive depigmentation in vivo [32,33] depending on the

enzymatic conversion by tyrosinase, and covalent binding as a

hapten to proteins [30,31].

Since we have previously shown that vitiligo vulgaris is mediated

by melanocyte antigen-specific CD8+ T cells [34], we postulate

that monobenzone by its selective interaction with melanocytes,

induces melanocyte-specific autoimmunity. In this report we

combined the topical skin-bleaching agent monobenzone with

immune-stimulating TLR7-agonist imiquimod and the TLR9-

agonist CpG [35,36], designated as MIC-treatment. This

combination proved to provoke a robust melanocyte antigen-

specific autoimmune response in C57BL/6 wildtype mice. This

activated response effectively abolished the growth of subcutane-

ous B16.F10 melanoma. Importantly, the therapeutic effect was

found in up to 85% of the mice, while it also mediated over 100

day tumor-free survival in 60% of the mice on average. Innate and

adaptive immunity cooperated in the observed therapeutic effect.

Our MIC therapy namely induced a melanocyte antigen-specific

CD8+ T cell response, a B16-specific serum IgG response and a

sustained NK cell expansion. Furthermore, the MIC treatment

conferred melanocyte antigen-specific CD8+ T cell-mediated

immunological memory that forcibly suppressed secondary tumor

growth. Our data establish the MIC therapy as an effective new

regimen in the field of melanoma immunotherapy.

Results

Expansion and activation of melanoma-reactive CD8+ T
cells and NK cells in response to monobenzone,
imiquimod and CpG treatment of subcutaneous B16.F10
melanoma

To characterize the in vivo immune response induced by

monobenzone and the immunostimulatory adjuvants CpG and

imiquimod against the highly aggressive and poorly immunogenic

B16.F10 melanoma, we inoculated C57BL/6 wildtype mice with

2.56103 B16.F10 cells subcutaneously in the right flank at day 0

(n = 5 mice/group), and from day 2 treated these mice with

monobenzone alone, the immunostimulatory adjuvants CpG and

imiquimod combined (CI) or monobenzone with imiquimod and

CpG (MIC). Importantly, tumors were injected in the flank, while

topical applications of monobenzone and imiquimod were

selectively applied on the shaved abdomen of the mice; CpG

was injected peritumorally. On treatment day 18, mice were

sacrificed and splenocytes were ex vivo tested for their specific

recognition of B16.F10 melanoma. Syngeneic EL4 mouse

thymoma cells were used as control.

As shown in figure 1A (left panel), MIC-treated mice showed

significantly elevated percentages of CD8+ T cells producing

TNF-a upon recognition of B16.F10 cells in vitro, as compared to

untreated mice. CD8+ T cells from MIC-treated mice did not

react to with the EL-4 control tumor cells, indicating the

melanoma specificity of the T cell response. This T cell activation,

albeit at a lower level, was also found in mice that were treated

with monobenzone alone, while CI-treated mice did not show

specific T cell reactivity against B16.F10 cells. Additionally, when

B16.F10 target cells were interferon-c (IFN-c)-primed to raise their

surface class-I expression (figure 1C), making them an optimal

CD8+ T cell target, more CD8+ T cell activation was seen in the

MIC-treated mice (figure 1A, right panel). The IFN-c primed

melanoma cells also evoked T cell activation in the CI-treated

mice, while T cell activation was not detected in the untreated-

and monobenzone-treated mice. The CD4+ T cell population did

not display any significant responses (data not shown).

NK cell activity against B16.F10 melanoma cells was found in

all treated mice as well as in untreated mice, as illustrated by TNF-

a and IFN-c production upon co-culture (figure 1B). These NK

cells did not react with EL4 control cells, illustrating their

melanoma-specific reactivity. However, NK cell activation was

significantly increased in MIC-treated mice as compared to

untreated mice, as indicated by the production of both TNF-a
and IFN-c. The other treatments did not enhance NK cell activity

against B16.F10 cells, except for the increased IFN-c production

by NK cells from CI-treated mice.

Taken together, these ex vivo analyses demonstrate that MIC-

and to a lesser extent CI-treatment induced the activation of TNF-

a-producing melanoma reactive CD8+ T cells. Furthermore, T

cells induced by the MIC treatment were also able to recognize

non-IFN-c-primed, poorly immunogenic melanoma cells. This

indicates that the MIC treatment generates a significant

melanoma-reactive CD8+ T cell population with elevated

functional avidity. Moreover, the MIC regimen significantly

increased NK-cell melanoma-reactivity in vivo.

Melanoma-reactive IgG response in MIC-treated mice
To further characterize the extent of the melanoma-specific

immune activation induced by the MIC treatment, we investigated

the formation of a melanoma-reactive antibody response. Of the

mice described in figure 1, peripheral blood serum was obtained

on day 18 of sacrifice. B16.F10 melanoma cells were permeabi-

lized and binding of serum IgG-, IgM-and IgA was determined.

Permeabilized EL4 thymoma cells were included as controls. As

shown in figure 2, only the MIC-treated mice showed significant

levels of melanoma-reactive serum IgG antibodies, whereas no

IgG binding to melanoma cells was found in monobenzone- and

CI-treated mice. Mice from all tested groups displayed compara-

ble background reactivity to EL4 thymoma cells, illustrating the

melanoma-specificity of the IgG-reactivity. IgG binding to intact,

unpermeabilized melanoma cells was negligible (data not shown).

Melanoma-reactive IgA was not detected and IgM did not show

any significant differences between groups (data not shown). The

melanoma-reactive IgG response induced by the MIC treatment in

vivo indicates the involvement of a concurrent B cell response

alongside the melanoma antigen-specific T cell activation found in

the MIC-treated mice.

MIC treatment inhibits growth of subcutaneous B16.F10
melanoma

To determine whether the melanoma antigen-specific immune

responses described above were able to eradicate B16.F10

melanoma in vivo, we treated mice bearing subcutaneous

melanoma and performed a long-term follow-up (figure 3A). On

day 0, C57BL/6 wildtype mice were inoculated subcutaneously

with 2.56103 B16.F10 melanoma cells. Treatments were started

on day 2, and continued for 33 days. Mice were either left

untreated, treated with the individual treatment components

monobenzone, CpG or imiquimod, or with CI- or MIC-treatment

regimens and tumor growth was monitored (figure 3A, n = 7 per

group). All untreated mice showed tumor development (TD)

around day 10, and none of these mice experienced a 200-day

tumor-free survival (TFS). In contrast, in 85% of mice treated with

MIC therapy the tumor did not grow during the treatment period

(figure 3A lower right panel). Only one mouse did not respond to the

MIC treatment and experienced a (delayed) tumor outgrowth

during the treatment period, while all other mice remained tumor-

free. 10 days after treatment cessation at day 35, two additional

MIC Therapy for Melanoma
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MIC-treated mice developed a melanoma. These animals were

directly sacrificed for analysis without monitoring their tumor

growth kinetics. This illustrates that MIC treatment effectively

suppressed melanoma growth in these two mice during treatment,

and that MIC therapy actively induces anti-tumor reactivity

without merely preventing tumor implantation. Ultimately, the

Figure 1. MIC treatment of subcutaneous B16.F10 melanoma induced melanoma-reactive CD8+ T cells and -NK cells in vivo.
Splenocytes were tested for their ex vivo activation upon co-culture with B16.F10 melanoma or EL4 thymoma control cells (n = 5 mice per group). A,
Left panel: CD8+ T cells from monobenzone- and MIC-treated mice showed significant TNF-a production upon co-culture with melanoma cells (black
bars; p,0.05 and p,0.003 respectively). In contrast, CD8+ T cells from CI-treated mice did not display significant TNF-a production upon melanoma
cell co-culture (non significant difference: ns). Right panel: To identify CD8+ T cell activation upon co-culture with immunogenic melanoma cells with
high MHC class-I expression, co-cultures with IFN-c primed B16.F10 cells were included (dashed bars). Under these conditions, CI-treated mice showed
significant TNF-a production as compared to untreated mice (p,0.03). The MIC-treated mice showed even more TNF-a production as in the non-IFN-
c-primed stimulation shown in the left panel. Monobenzone-treated and untreated mice did not display this increased T cell activation upon
splenocyte co-culture with IFN-c primed melanoma cells. T cell activation upon splenocyte co-culture with syngeneic EL4 thymoma control cells
showed comparable background levels in all groups (white bars). B, Left panel: Only NK cells from MIC-treated mice showed significantly increased
TNF-a production upon co-culture with melanoma cells (p,0.008). Right panel: Elevated production of IFN-c was found in NK cells from CI- and MIC-
treated mice in response to co-culture with melanoma cells (p,0.02 and p,0.02 respectively). TNF-a and IFN-c production by NK cells was
comparable in all groups upon co-culture with EL4 control cells. For the statistical analysis of the in vivo tumor growth kinetics of the treatments
depicted in this figure, see table 1 (‘‘Exp. 2’’). C, B16.F10 melanoma cells upregulate their surface MHC class-I expression upon IFN-c exposure. While
IFN-c-unexposed melanoma cells express very low levels of surface MHC class-I (dashed line), priming of these cells with 1000 U/ml IFN-c restores
their surface expression of MHC class-I (black line). Control incubations of IFN-c-primed melanoma cells with only the IgG2a-detecting secondary
antibody were negative (grey line).
doi:10.1371/journal.pone.0010626.g001
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remaining 57% of the MIC-treated mice experienced tumor-free

survival for more than 200 days. The individual treatment

components monobenzone, CpG or imiquimod all mediated a

certain degree of tumor growth delay, resulting in suppression of

melanoma outgrowth in these groups. Furthermore, the combi-

nation of CpG and imiquimod acted synergistically in delaying

melanoma outgrowth and inducing tumor-free survival. The

survival data are summarized in figure 3B, showing the long-term

tumor-free survival data of the different treatments. The

therapeutic effect of the MIC treatment was found in four

independent in vivo experiments, which all showed significant

inhibition of tumor growth (table 1).

To investigate whether long-term surviving MIC-treated mice

developed protective immunological memory, MIC-treated 100-

and 200-day surviving mice from two independent experiments

were challenged with B16.F10 melanoma cells subcutaneously in

the flank. Without further treatment, tumor outgrowth was

monitored and compared to untreated, naı̈ve mice. Untreated

mice showed comparable tumor outgrowth as seen in figure 3A

(upper left panel). The MIC long-term survivors all showed a

significant growth retardation following the tumor challenge

(figure 3C, upper and lower panel). These data show that the MIC

treatment had induced melanoma antigen-specific immunological

memory which remained effective at 65- and 165 days after

treatment cessation. Occasionally the development of vitiligo-like

patches of depigmented fur at sites distant from initial monoben-

zone application was found in about 50% of long-term surviving

mice (figure 3D). Importantly, vitiligo development occurred

exclusively in mice treated with MIC therapy, and was absent in

control-treated animals.

As summarized in table 1, the MIC regimen can mediate

significant tumor-growth delay and increase tumor-free survival.

Although monobenzone, CpG, imiquimod or the CI combination

induced significant melanoma growth inhibition, they did not

confer long-term tumor-free survival as found in the MIC therapy-

treated mice. Combined with the immunological data described in

figures 1 and 2, these results indicate that the immunological

impact of the MIC regimen translates to significant tumor

eradication in vivo.

Activation of an NK cell response in MIC treated mice in
vivo

We subsequently carried out immune monitoring of treated

mice to investigate the in vivo immune activation. We determined

the ratios of different peripheral blood leukocyte (PBL) populations

in blood obtained from the tailvein on day 8 and 23 following

melanoma inoculation (figure 4A). Interestingly, the MIC-treated

mice (right panels) showed increased levels of NK cells (NK1.1+
CD3-) among their PBL on day 8, as compared to the untreated

group. NK cell counts were also significantly increased in mice

treated with CpG, imiquimod or the combination of these

compounds (CI). Importantly, the increased NK cell numbers

only persisted up to day 23 in MIC-treated mice (figure 4A). This

MIC treatment-induced NK cell expansion has been found in

three independent experiments, the statistical analysis of which is

shown in table 2. Remarkably, monobenzone alone did not

influence PBL ratios at either time point. Taken together, although

the CI- and MIC treatment both mediated a significant increase in

blood NK cell counts, this effect persisted only in MIC-treated

mice.

Importantly, MIC-treated, tumor-free surviving mice included

in tumor challenge experiments (figure 3C) did not display

increased blood NK cell counts following the challenge (p.0.05;

unpaired t-test at day 15 following inoculation: average percentage

10 (+/2 1.4)). This indicates that the identified NK cell expansion

is MIC treatment-dependent. Furthermore, this suggests that the

protective immunological memory observed in figure 3C is not

dependent on NK cells. Instead, we found circulating melanoma

antigen-specific CD8+ T cells in the peripheral blood of these

MIC-treated, tumor-free surviving mice (figure 4B). To this end,

peripheral blood CD8+ T cells were tested for their recognition of

the H2-Kb/TRP-2180-188-antigen. This is an immunodominant

CD8+ T cell epitope of B16 melanoma. Figure 4B shows that a

significant population of TRP-2 antigen-specific CD8+ T cells is

present in tumor-free surviving mice, 120 days following the first

melanoma inoculation and 85 days after MIC treatment cessation.

Recognition of the control H2-Kb/OVA257-264-tetramer by

peripheral blood T cells of these mice was negative (data not

shown).

Taken together, these data demonstrate that the MIC treatment

effect is likely mediated by activated NK cells and CD8+ T cells.

Importantly, when treatment is stopped melanoma antigen-

specific CD8+ T cells remain active in tumor-free surviving mice,

suggesting that these T cells are responsible for the MIC therapy-

induced tumor protective immunological memory.

CD8+ T cell- and NK cell depletion prior to- and during
MIC therapy abrogates therapeutic effect

To verify whether NK cells and/or CD8+ T cells are essential

for the therapeutic effect of the MIC therapy, we performed MIC

treatment in C57BL/6 wildtype mice (n = 5/group) inoculated with

B16.F10 melanoma, following either a CD8+ T cell- or NK-cell

depleting pre-conditioning monoclonal antibody (mAb) regimen.

Control groups either received the MIC treatment following an

isotype control mAb regimen, or were left untreated. Depletion of

CD8+ T cells and NK-cells was confirmed to be .98% and

.95% respectively, as measured by flowcytometry (data not

shown).

Figure 2. A melanoma-reactive serum IgG response was found
in MIC-treated mice. Upon sacrifice peripheral blood serum was
obtained from treated mice, and serum antibody binding to B16.F10
melanoma cells was analyzed using flow cytometry (n = 5 mice per
group). EL4 syngeneic thymoma cells were used as a control to verify the
melanoma-specificity of the antibody binding, and showed comparable
serum IgG binding levels in all groups (p.0.05, one-way ANOVA). A
significant level of IgG antibody binding to the melanoma cells above the
EL4 background level was found in the MIC-treated mice (p,0.01, paired
t-test). Furthermore, only the MIC-treated mice showed melanoma-
reactive IgG levels significantly above those found in untreated mice
(p,0.02, unpaired t-test). IgA controls were negative, and IgM antibodies
showed no significant binding levels (data not shown). Data is
representative of three independent in vivo experiments.
doi:10.1371/journal.pone.0010626.g002
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Figure 3. Growth of subcutaneous melanoma is inhibited by MIC therapy. Mice (n = 7 per group) were treated with monobenzone, CpG,
imiquimod, CI- or the MIC-regimen. Tumor growth and animal survival were monitored for 200 days. Each graph line depicts an individual tumor
growth curve. A, Upper left panel: Untreated mice all show tumor development (TD) around day 10, and none of the mice experienced a 200-day
tumor-free survival (TFS). In contrast, 6 out of 7 MIC-treated mice remained tumor-free during treatment, and only one mouse showed delayed TD

MIC Therapy for Melanoma
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As shown in figure 5A, MIC treatment combined with CD8+ T

cell-depletion (red lines) resulted in melanoma development in

100% of the mice. In contrast, MIC-treated mice receiving isotype

control mAb (grey lines) showed reduced or no tumor outgrowth

comparable to previous experiments (table 1), while melanomas

grew out rapidly in untreated mice (black lines). Importantly, tumor

outgrowth for CD8+ T cell-depleted mice was significantly faster

than in mice treated with MIC therapy and the isotype control,

nonetheless still significantly slower than in untreated mice. These

results show that the anti-tumor effect of the MIC treatment was

largely abolished by the depletion of the CD8+ T cells. The minor

but significant tumor growth inhibition by the MIC regimen in the

absence of CD8+ T cells suggests that this therapy also effectively

involves another cell population, likely the NK cells we observed to

be activated in previous experiments. Figure 5B shows that

depletion of the NK cell population during MIC therapy resulted

in tumor development in 80% of the mice (green lines). Importantly,

melanoma outgrowth rapidly reached a state of ‘‘stable disease’’ in

Table 1. Statistics of in vivo tumor experiments.

Days after Average p-value
TFS during
treatment Median p-value TFS .100 days

Exp. Treatment # mice Inoculation1
tumor size
(mm

2
) tumor size* (# mice) survival survival** (# mice)

(+/2 SEM) (vs. untreated) (% of group) (days) (% of group)

1 untreated 7 22 64.8 (14.3) nt 0 nt nt nt

monobenzone 7 22 27.1 (7.5) ,0.04 0 nt nt nt

MIC 7 22 3.1 (1.9) ,0.0011 4 (57%) nt nt nt

2 untreated 5 18 70.6 (18.0) nt 0 nt nt nt

monobenzone 5 18 50.0 (29.7) ns 0 nt nt nt

CpG 5 18 14.4 (3.5) ,0.02 0 nt nt nt

imiquimod 5 18 61.6 (7.2) ns 0 nt nt nt

CI 5 18 9.0 (4.5) ,0.02 0 nt nt nt

MIC 5 18 5.6 (3.0) ,0.008 2 (40%) nt nt nt

3 untreated 11 27 81.6 (20.2) nt 0 40 nt 0

MIC 11 27 0.4 (0.2) ,0.0006 8 (72%) .100 ,0.0001 7 (64%)

4 untreated 7 27 187.9 (13.4) nt 0 27 nt 0

monobenzone 7 27 88.9 (35.3) ,0.03 1 (14%) 34 ,0.03 1 (14%)

CpG 7 27 71.1 (30.0) ,0.004 0 35 ,0.005 0

imiquimod 7 27 102.9 (31.9) ,0.04 0 34 ,0.03 0

CI 7 27 13.0 (5.3) ,0.0001 1 (14%) 36 ,0.0003 1 (14%)

MIC 7 27 6.0 (6.0) ,0.0001 6 (85%) .200 ,0.0003 4 (57%)

ns: not significant (considered if p.0.05). Exp.: experiment.
nt: not tested. TFS: tumor-free survival.
*: Unpaired t-test. CI: CpG & imiquimod.
**: Logrank test for survival (endpoint tumor size max 200 mm2). MIC: monobenzone, imiquimod & CpG.
1:Day of tumor size comparison (last day on which experimental animals were all alive).
For Exp. 2 see Fig. 1A/B, for Exp. 3 see Fig. 3C (upper panel), for Exp. 4 see Fig. 3A/B and C (lower panel),
doi:10.1371/journal.pone.0010626.t001

during the treatment (lower right panel). *:10 days following treatment cessation at day 35, two additional mice developed a melanoma and these
animals were directly sacrificed for analysis without monitoring tumor growth kinetics. Eventually, 4 out of 7 MIC-treated mice showed 200-day TFS,
since 2 of the mice developed a melanoma 10 days following treatment cessation at day 35. The individual treatment components monobenzone,
CpG or imiquimod all mediated a certain degree of tumor-growth delay. Interestingly, CpG and imiquimod clearly work synergistically in the CI
regimen. Depicted tumor growth kinetics are representative of 4 independent in vivo experiments. For the statistical analysis of the in vivo tumor
growth kinetics of the treatments depicted in this figure, see table 1 (‘‘Exp. 4’’). B, Kaplan-Meier survival curve for the different treatment groups
depicted under A, showing 57% 200-day survival for MIC-treated mice against 14% long-term survival for monobenzone- or CI treated mice. Mice left
untreated or receiving one of the individual treatment components, no TFS was found. These animals were sacrificed around day 25–35 due to
maximally allowed tumor burden. C, The MIC therapy induced an effective immunological memory response. Upper panel: At day 100 (day 65 after
treatment cessation) surviving mice were challenged with a melanoma tumor-inoculation, and tumor growth was monitored without further
treatment. Untreated naive control mice showed rapid tumor development (black line, n = 7). Mice treated previously with MIC therapy showed
significant tumor growth delay (dashed line, n = 7). Lower panel: Mice challenged at day 200 (day 165 after treatment cessation) show protective
immunity to a comparable degree to that found in the day 100 tumor challenge shown in the upper panel. Untreated control mice showed normal
tumor development (black line, n = 7) while mice treated previously with the MIC therapy display significant tumor growth retardation (dashed line,
n = 4). Depicted graphs represent two independent tumor challenge experiments (follow-up on Exp. 3 & 4 in table 1). Statistical analysis using
unpaired t-test comparing MIC-treated mice with untreated animals on designated time points (*: p,0.04, **:p,0.01). D, MIC-treated, long-term
surviving mice occasionally develop progressively depigmenting patches of fur in a vitiligo-like pattern, distant from the initial monobenzone
application site (arrows). This effect occurs in approximately 50% of the long-term surviving animals.
doi:10.1371/journal.pone.0010626.g003
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this situation, with tumors remaining of equal size for extensive

periods of time. Taken together, these data imply that the MIC

therapy effectively engages both CD8+ T cells and NK cells in its

protective therapeutic effect.

MIC therapy significantly suppresses tumor growth of
established melanoma

To determine if MIC treatment has a therapeutic effect on

larger established melanoma, mice were subcutaneously inoculat-

ed with 16105 B16.F10 melanoma cells and treatments were

started when all tumors had reached the minimum measurable

size of 262 mm (on average after 3–4 days). Mice were treated

with the individual treatment compounds alone, or the CI- or

MIC regimen. Additionally, combinations of monobenzone with

either CpG or –imiquimod as only additional adjuvant were

compared with the CI regimen to verify if monobenzone is the

critical component in the MIC therapy. The statistical analyses of

the tumor growth kinetics in 4 independent in vivo experiments

using this established tumor setting are summarized in table 3. All

treatments containing monobenzone and at least one adjuvant

mediated a significant growth delay of established B16.F10

tumors, whereas the adjuvants imiquimod and CpG alone or

combined (CI) did not significantly inhibit tumor growth. Of the

treatments containing monobenzone, the combination of all three

compounds (MIC treatment) showed the most profound thera-

peutic effect. Importantly, as shown in table 3 under ‘‘Exp. 5’’,

monobenzone combined with either imiquimod or CpG as

adjuvants displayed a significantly better therapeutic effect than

the CI regimen, when compared to untreated mice. Both exp. 5

and exp. 6 showed that MIC treatment was significantly more

effective than CI treatment. This indicates monobenzone to be the

pivotal component in mediating the therapeutic effect of the MIC

regimen. Besides significantly suppressing tumor growth, MIC

therapy was also found to significantly improve the survival of

mice bearing established melanoma.

These data illustrate that the MIC regimen also has a significant

therapeutic effect in the treatment of established subcutaneous

melanoma.

Discussion

In the present study we demonstrate that the vitiligo-inducing

properties of monobenzone cream combined with the immunos-

timulatory adjuvants CpG and imiquimod synergistically induces

potent melanoma antigen-specific immunity and tumor eradica-

tion in the B16-B6 mouse model of melanoma. We show that the

MIC treatment of subcutaneous B16.F10 melanoma in C57BL/6

wildtype mice inhibited the outgrowth of melanoma in up to 85% of

the mice. Moreover, 64% or 57% of the mice remained tumor-

Figure 4. MIC-treated mice show a sustained NK cell expansion and circulating melanocyte antigen-specific CD8+ T cells. A,
Peripheral blood was collected from the tailvein of treated mice on day 8 and 23 of treatment, and average ratios between T cells (CD3+, black
sections), B cells (CD19+, white sections), NK cells (NK1.1+, CD3-, grey sections) and other peripheral blood leukocytes (PBL; dashed sections) were
determined for the PBL (n = 7 mice per group). Interestingly, MIC-treated mice showed a significant NK cell expansion on both day 8 and 23 (see
table 2, ‘‘Exp. 4’’). This expansion of NK cells was also found in CpG-, imiquimod- and CI-treated mice, although for these animals this reaction was
only found on day 8. Monobenzone alone did not influence PBL ratios on either time point, comparable to untreated mice. Depicted data is
representative of three independent in vivo mouse experiments. For the statistical analysis of the in vivo differences in NK cell counts in these
experiments see table 2. B, Peripheral blood CD8+ T cells were tested for binding to H2-Kb/TRP-2180-188-tetramers at day 120 following tumor
inoculation (day 85 after treatment cessation, n = 4). TRP-2 represents one of the immunodominant epitopes of B16.F10 melanoma. Long-term
surviving, MIC-treated mice showed a significant population of TRP-2-specific CD8+ T cells circulating in their peripheral blood at day 120, as
compared to untreated mice 10 days after tumor inoculation (n = 7). Binding to control H2-Kb/OVA257-264-tetramer by the tested PBL was negative
(data not shown).
doi:10.1371/journal.pone.0010626.g004
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free for more than 100- or 200 days respectively. The MIC

treatment induced melanoma antigen-specific immunological

memory, effectively suppressing tumor growth up to 165 days

after treatment cessation. Immunomonitoring of the MIC treated

mice showed that the regimen induced a systemic B16-specific

CD8+ T cell- and NK cell response. Additionally, a melanoma-

specific serum IgG response was found in the MIC treated mice.

MIC therapy was also effective against larger established tumors,

mediating significant tumor growth inhibition and prolonged

survival. These data show that MIC therapy triggers a strong

melanoma-specific in vivo innate- and adaptive immune response.

It has been suggested by Berghöfer et al. that the combination

imiquimod and CpG is deleterious, since in vitro it has been found

that triggering of TLR7 and TLR9 simultaneously on DC or

leukocytes will deteriorate the induced interferon-a production by

these cells [37]. Importantly, the study by Berghöfer et al.

concludes that the inhibitory effect of simultaneous TLR7 and -

9 triggering only applies to CpG types A and C, while such an

effect was not found for CpG type B. Our present study employs

CpG 1826, which is a B-type CpG. While Berghöfer et al. show

that combining B-type CpG with TLR7 triggering was not

inhibitory, even showing a slight synergistic trend, we have

actually found a functional synergism between CpG 1826 and

TLR7-triggering by imiquimod in our present in vivo study.

Depletion of CD8+ T cells and NK cells prior to- and during

MIC treatment ablated the therapeutic effect, indicating that these

cells are imperative in mediating the MIC therapeutic effect. It

seems that MIC therapy induces the immune cascade as

previously suggested by Liu et al. [38], which is characterized by

the sequential activation of NK cells, conventional DC and

ultimately the formation of effective CD8+ T cell immunity and

immunological memory. Importantly, MIC treatment also led to

the generation of melanoma-specific antibodies. These antibodies

bound to intracellular antigens, selectively in melanoma cells. This

indicates they are directed against antigens in the melanosome, an

organelle found exclusively in pigmented cells such as melanocytes

and melanoma cells. Since the melanosome is the primary source

of melanocyte differentiation antigens, the antibodies we identified

can enhance the adaptive immune response through opsonisation

of antigen liberated from dying pigmented cells. Through the

subsequent formation of immune complexes this improves the

uptake and successive (cross) presentation of melanoma antigens

by DC [39].

Melanoma-specific CD8+ T cells induced by the MIC regimen

show a higher functional avidity. As shown in figure 1A, CD8+ T

cells in the MIC-treated mice could be activated by non-IFN-c-

primed melanoma cells. These cells have very low levels of MHC

class-I (figure 1C), rendering them poorly recognizable to T cells.

The occurrence of high avidity T cells recognizing poorly

immunogenic melanoma cells suggests that the MIC therapy

mediates an avidity maturation process, which is known to occur

in T cell populations exposed to constant high levels of antigen

[40]. The continuous application of monobenzone on the skin may

generate a steady flow of melanocyte-specific antigens, leading to

the avidity maturation of the reactive T cell pool. This maturation

clearly did not occur during the CI treatment, thereby leading to

the absence of high avidity T cells recognizing IFN-c unprimed

melanoma cells in these mice. The CI regimen provides a general

immune activating stimulus, which in the presence of melanoma

may result in short-term anti-melanoma reactivity. In contrast, the

MIC regimen specifically engages melanocyte differentiation

antigens in the generation of adaptive immunity via the

monobenzone component (discussed below). The therapeutic

value of this antigen-targeting by monobenzone is demonstrated

by the enhanced ability to induce melanoma-reactive CD8+ T

cells and protective anti-melanoma immunity in vivo, as compared

to the CI regimen.

Concerning the working mechanism of monobenzone, it has a

selective- and inactivating interaction with the enzyme tyrosinase

which catalyzes pigment synthesis in the melanosome, an organelle

exclusively found in melanocytes [21]. This interaction results in

the formation of quinone metabolites which bind to cysteine

residues in the protein peptide chain, forming quinone-haptens

[31]. These quinone hapten-carrier complexes are known to be

potent contact sensitizers which can trigger hapten-specific

immune responses [41,42]. Generally, this kind of hapten-induced

immunity results in enhanced depigmentation in vivo, since

quinone-metabolites of phenols and catechols are known to

induce more extensive depigmentation than the parental com-

pound [33]. Moreover, the extent of catechol-induced depigmen-

tation depends on quinone formation by the tyrosinase enzyme,

including subsequent covalent binding of the quinone to proteins

[32]. At high concentrations (250–500 mM for 24 hours) mono-

benzone can additionally induce non-apoptotic cell death in

exposed melanocytes in vitro [43]. In contrast, we have investigated

Table 2. Statistics of in vivo peripheral blood NK cell counts.

Days after average %

Exp. Treatment # mice Inoculation1
NK1.1+/
CD3- PBL p-value*

(+/2 SEM)

2 untreated 5 15 7.3 (0.4) nt

monobenzone 5 15 6.3 (0.2) ns

CpG 5 15 8.2 (1.1) ns

imiquimod 5 15 8.2 (0.3) ns

CI 5 15 12.3 (1.9) ,0.04

MIC 5 15 13.3 (2.2) ,0.03

4 untreated 7 8 6.65 (0.7) nt

monobenzone 7 8 5.91 (0.2) ns

CpG 7 8 11.42 (1.5) ,0.02

imiquimod 7 8 9.91 (0.7) ,0.01

CI 7 8 17.29 (1.0) ,0.0001

MIC 7 8 17.43 (1.6) ,0.0001

untreated 7 23 8.38 (1.2) nt

monobenzone 7 23 7.03 (0.7) ns

CpG 7 23 6.17 (0.7) ns

imiquimod 7 23 3.81 (0.1) ns

CI 7 23 5.95 (0.5) ns

MIC 7 23 13.74 (0.7) ,0.01

7 untreated 7 2 6.7 (0.4) nt

MIC 7 2 16.6 (2.2) ,0.001

untreated 7 8 4.9 (0.3) nt

MIC 7 8 12.6 (1.1) ,0.0001

untreated 7 15 5.9 (0.8) nt

MIC 7 15 12.8 (0.3) ,0.002

Exp.: experiment. CI: CpG, imiquimod.
nt: not tested. MIC: monobenzone, imiquimod & CpG.
ns: not significant (considered if p.0.05). For Exp. 4 see Fig. 4A.
*: Unpaired t-test.
1:Day after tumor inoculation on which PBL were tested.
doi:10.1371/journal.pone.0010626.t002
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that at lower concentrations (20 to 40 mM) monobenzone-exposed

pigmented cells provoke robust and specific CD8+ T cell

immunity, by the formation of quinone-haptens to the tyrosinase

protein and the subsequent activation of local dendritic cells by

exposed pigmented cells (Van den Boorn et al., manuscript in

preparation of submission). Since melanoma cells share many antigens

with their normal counterparts, the melanocytes, the melanocyte-

specific immunity evoked by monobenzone also acts against

melanoma cells (as evidenced by the MIC therapy). Because

priming of the anti-melanoma immune response during MIC

therapy depends upon the interaction of monobenzone with

tyrosinase in skin melanocytes, and the induced immune response

encompasses more melanosomal antigens besides tyrosinase

(figure 4B and manuscript in preparation), our MIC regimen may

well be effective against tyrosinase-negative melanoma variants.

Moreover, tyrosinase expression appears to be conserved in

malignant melanoma cells [44]. Tyrosinase expression in mela-

noma tissue also provides the possibility of local treatment of

cutaneous metastasis with the MIC regimen.

Interestingly, vitiligo-like depigmentation of the fur distant from

the monobenzone application site occurred in approximately 50%

of the long-term surviving MIC-treated animals (figure 3D), but

not in non-responding or control treated mice. This phenomenon

illustrates an enduring systemic immune response effective against

pigmented cells. However, vitiligo development was expected to

directly correlate with the effective anti-tumor immune response

observed in all MIC –treated mice, especially since monobenzone

is a potent skin depigmenting agent in humans. The vitiligo-like

fur depigmentation in mice depends on autoimmune melanocyte

destruction in the hair follicle. The modest level of vitiligo may be

explained by the fact that hair depigmentation (poliosis) only

occurs in advanced cases of vitiligo [45], and is likely related to the

hair follicle being an immune-privileged site in both humans [46]

and mice [47]. Thereby, fur depigmentation likely underestimates

the level of autoimmune activation against pigmented cells. The

immune privilege of the hair follicle can thereby explain the

modest depigmentation observed in the MIC-treated mice.

In conclusion, we have developed a new form of off-the-shelf

melanoma immunotherapy consisting of two creams and four

CpG injections. This simple design makes the MIC therapy easily

applicable in the clinic. Moreover, this low-cost regimen does not

require stringent patient eligibility criteria such as HLA-haplotype,

Figure 5. The therapeutic effect of MIC therapy is abrogated by NK cell- or CD8+ T cell depletion. Each graph line represents an
individual tumor growth curve. A, Mice depleted of CD8+ T cells prior to tumor inoculation and throughout the MIC therapy (red lines, n = 5) all
developed a tumor. In these MIC-treated mice tumors grew out significantly faster than in the isotype-control mAb-treated mice (grey lines; p,0.02,
n = 5), who displayed tumor growth kinetics similar to MIC-treated animals in previous experiments. Nonetheless, tumor outgrowth in CD8+ T cell
depleted mice was still significantly slower than in untreated mice (black lines; p,0.02, n = 5). The tumor size of CD8+ T cell depleted animals was
statistically compared with isotype-control mAb-treated animals on day 28, and with untreated animals on day 22. B, Mice depleted of NK cells prior
to tumor inoculation and throughout MIC therapy (green lines, n = 5) showed tumor establishment in 80% of mice. Tumors in these mice grew out
very slowly or remained of equal small size throughout the experiment. In contrast, untreated mice showed rapid tumor development (black lines,
n = 5). Mice treated with isotype-control mAb and MIC therapy (grey lines, n = 5) showed tumor growth similar to mice treated with MIC therapy in
previous experiments.
doi:10.1371/journal.pone.0010626.g005
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and does not require elaborate patient-specific in vitro cell cultures

or non-myeloablative lymphodepletion prior to the start of

treatment, reducing patient treatment strain.

Materials and Methods

Ethics statement
All animal experiments were carried out under protocols

approved by the Animal Ethical Committee of the Academic

Medical Centre in Amsterdam (DEC code DDE, studies 100452,

100969 and 101291). Mice were obtained from Charles River

Labs (Maastricht, The Netherlands). Animals were housed in the

Animal Research Institute Amsterdam (ARIA; ABSL-3/DM-II

housing level) and cared for by qualified personnel on a daily basis.

Food and water were available ad libitum and cages contained

bedding, shelter and nesting material.

Cell lines and mice
B16.F10 melanoma cells (a kind gift from Dr. A. Jorritsma,

Netherlands Cancer Institute, Amsterdam, The Netherlands) and

EL4 thymoma cells (a kind gift from the department of

Immunohematology and Blood Transfusion, Leiden University

Medical Center, Leiden, The Netherlands) were maintained in

culture medium consisting of RPMI 1640 (Cambrex bioscience,

Verviers, Belgium) with 10% heat-inactivated fetal bovine serum

(Hyclone, Erembodegem-Aalst, Belgium), 2 mM L-glutamine

(Gibco invitrogen, Breda, The Netherlands), 50 U ml21 penicillin

and 50 mg ml21 streptomycin (Gibco invitrogen), in a humidified

atmosphere at 37uC and 5% CO2. Female SPF C57BL/6 wildtype

mice were used in tumor experiments at 10 weeks of age.

Tumor inoculation and treatments
Mice were inoculated with 2.56103 or 16105 B16.F10

melanoma cells in 50 ml of sterile PBS (Dulbecco’s PBS, PAA,

Pasching, Austria) subcutaneously in the right flank. Treatments

were started 2 days later (for 2.56103 inoculated melanoma cells)

or when all tumors reached a minimum size of 262 mm (for

16105 inoculated melanoma cells on average after 3–4 days).

Treatment continued for 33 days. B16.F10 in vitro cell culture was

standardized for all experiments. Melanoma cells were in the

exponential growth phase in vitro when used for in vivo inoculation,

and were confirmed to be .98% viable by trypan blue exclusion.

Daily, perpendicular tumor diameters were measured using

callipers. Mice were treated with daily applications of 50 ml of

20% monobenzone cream (4-benzyloxyphenol, Sigma-Aldrich,

Zwijndrecht, The Netherlands; cream prepared by the Academic

Medical Centre pharmacy for use in animal experiments) and/or

50 ml of 5% imiquimod cream (AldaraTM, 3 M Healthcare,

Leicestershire, UK) on Monday, Wednesday and Friday on the

shaved abdomen. Creams were completely massaged in using a

spatula. Mice received 50 ml of completely phosphorothioated

CpG oligodeoxynucleotides (1 mg ml21 in sterile PBS) injected

peritumorally on day 0, 3, 6 and 21 (CpG B 1826, 59-

TCCATGACGTTCCTGACGTT-39, produced as reported pre-

viously [48]).

Table 3. Statistics of in vivo tumor experiments inoculating 1610e5 melanoma cells and starting treatment when all tumors were
at least 262 mm.

Days after Average p-value p-value Median p-value

Exp. Treatment # mice inoculation
1

tumor size (mm2) tumor size* tumor size* survival survival**

(+/2 SEM) (vs. untreated) (vs. CI) (days)

5 untreated 5 15 98.6 (20.7) nt nt 15 nt

monobenzone 5 15 73.6 (10.2) ns nt 15 ns

imiquimod 5 15 74.4 (5.0) ns nt 15 ns

CpG 5 15 55.0 (5.6) ns nt 19 ,0.05

CI 5 15 57.8 (8.0) ns nt 19 ,0.05

monobenzone, imiquimod 5 15 32.4 (10.3) ,0.03 ns 19 ,0.05

monobenzone, CpG 5 15 32.8 (9.6) ,0.03 ns 22 ,0.02

MIC 5 15 26.4 (7.5) ,0.02 ,0.03 22 ,0.02

6 untreated 3 10 81.3 (29.4) nt nt 13 nt

CI 5 10 1.4 (0.2) ,0.01 nt 28 ,0.007

MIC 5 10 1.0 (0.3) ,0.01 ,0.04 24 ,0.007

7 untreated 7 16 135.6 (24.4) nt nt 18 nt

MIC 7 16 8.9 (3.1) ,0.001 nt 28 ,0.002

8 untreated 7 16 145.4 (15.1) nt nt 16 nt

MIC 7 16 17.6 (6.3) ,0.0001 nt 26 ,0.0001

ns: not significant (considered if p.0.05).
nt: not tested.
1:Day of tumor size comparison (last day on which experimental animals were all alive).
*: Unpaired t-test.
**: Logrank test for survival.
Exp.: experiment.
TFS: tumor-free survival.
CI: CpG, imiquimod.
MIC: monobenzone, imiquimod & CpG.
doi:10.1371/journal.pone.0010626.t003
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In vitro splenocyte priming assay
Erythrocytes were removed from fresh splenocyte single cell

suspensions by hypotonic lysis, and splenocytes were cultured in

RPMI 1640 (Cambrex) with 10% heat-inactivated fetal bovine

serum (Hyclone), 2 mM L-glutamine (Gibco invitrogen),

50 U ml21 penicillin and 50 mg ml21 streptomycin (Gibco

invitrogen), 50 mM 2-mercaptoethanol (Sigma-Aldrich, Zwijn-

drecht, The Netherlands), 15 mg ml21 gentamycin (Duchefa,

Haarlem, The Netherlands), 20 U ml21 IL-2 (Novartis, Arnhem,

The Netherlands) and 5 mg ml21 ConA (Boehringer Mannheim,

Mannheim, Germany). ConA blasts were co-cultured on day 10

with B16.F10 and EL4 cells in vitro in a 1:1 ratio, in culture

medium supplemented with IL-2 and 2-mercaptoethanol for

5 hours at 37uC and 5% CO2 in the presence of brefeldin-A

(1:1000, Golgiplug, BD Bioscience, San Diego, CA) protein

transport inhibitor. When applicable B16.F10 cells were 24 hours

IFN-c pre-treated prior to splenocyte co-culture (1000 U ml21,

Strathmann, Bergisch Gladbach, Germany). Subsequently cells

were stained for intracellular cytokine production.

Flow cytometry and intracellular cytokine staining
Erythrocyte-free single cell suspensions of splenocytes, ConA

blasts or PBL were prepared in FACS buffer (PBS with 1% bovine

serum albumin and 0.05% NaN3) and cells were stained in the

dark on ice for 20 minutes for surface expression of CD8a (APC-

Cy7), CD4 (PerCP-Cy5.5), CD3e (FITC), CD137 (FITC), CD19

(PerCP-Cy5.5), or NK1.1 (Pe-Cy7; all antibodies BD Bioscience,

San Diego, CA). For intracellular staining, cells were permeabi-

lized using the Cytofix/Cytoperm kit (BD Bioscience) according to

the manufacturer’s protocol, and stained for intracellular cytokines

using TNF-a (Pe-Cy7, BD Bioscience), TNF-a (PE, e-Bioscience,

San Diego, CA) or IFN-c (Alexa-700, BD Bioscience). Tetramer

analysis was performed by incubating cell suspensions with H2-

Kb/TRP-2180-188-tetramer (SVYDFFVWL, APC-labelled, San-

quin, Amsterdam, The Netherlands) or H2-Kb/OVA257-264-

tetramer (SIINFEKL, PE-labelled, kind gift from K.L. Franken,

Leiden University Medical Centre, The Netherlands) in CM for

25 minutes at 37uC and 5% CO2 prior to subsequent surface

antibody staining. Surface MHC class-I detection was performed

by incubating IFN-c-primed and –unexposed B16.F10 cells with

mouse-anti-mouse MHC class-I antibody (clone 28-14-8, IgG2a,

eBioscience, San Diego, CA) followed by incubation with goat-

anti-mouse IgG2a-detecting antibody (Alexa 488, Molecular

Probes, Invitrogen, Breda, The Netherlands). Samples were

measured on a FACS Canto-II flowcytometer (Beckton Dickinson,

San Diego, CA). Data was analyzed using FlowJo software (Tree

Star Inc., Ashland, OR).

Serum antibody determination
B16.F10 and EL4 cells were washed in FACS buffer and

permeabilized using the Cytofix/Cytoperm kit (BD Bioscience,

San Diego, CA) according to the manufacturer’s protocol. Cells

were incubated with mouse serum diluted 1:200 in Perm/Wash

(BD Bioscience) for 1 hour at room temperature. Subsequently,

cells were tested for serum-antibody binding by incubation with

biotinylated anti-mouse IgG, -IgA and -IgM antibodies (Biole-

gend, Uithoorn, The Netherlands) for 20 minutes on ice. Binding

of biotinylated detection antibodies to target cells was detected by

incubation with streptavidin-APC (BD Pharmingen, San Diego,

CA) for 20 minutes in the dark on ice, and analyzed by a FACS

Canto-II flowcytometer (Beckton Dickinson, San Diego, CA).

In vivo NK cell- and CD8+ T cell depletion
Mice were injected intraperitoneally on day -2 and 0 prior to

tumor inoculation and every following fourth day during the

experiment with 100 mg of anti-mouse CD8a or anti-mouse

NK1.1 (clone 53-6.7 or PK136 respectively, low-endotoxin azide-

free purified, Biolegend, Uithoorn, The Netherlands) or IgG2a k
isotype control (clone RTK2758, low-endotoxin azide-free

purified, Biolegend) monoclonal antibodies. Prior to tumor

inoculation CD8+ T cell or NK cell depletion was confirmed by

flowcytometry.

Statistical analysis
Analysis comparing values between treatment groups were

performed using a two-tailed unpaired t-test (95% CI). Different

conditions within the same treatment group were compared using

the two-tailed paired t-test (95% CI). Survival data was analysed

using the Logrank test (95% CI). *: p,0.04, **: p,0.01. Analyses

carried out with GraphPad Prism 5 software (GraphPad, La Jolla,

CA). Graphs depict mean with SEM.

Acknowledgments

The authors wish to thank B. van Urk, P. Kuit and the personnel of the

ARIA-IWO-S and ARIA-IWO-ABSL-III facilities for animal care &

assistance, K.L. Franken for kindly providing H2-Kb/OVA257-264-

tetramer, A. Jorritsma for kindly sharing B16.F10 cells, and W. Douwenga

for technical assistance.

Author Contributions

Conceived and designed the experiments: JGvdB RML. Performed the

experiments: JGvdB DK EPMT DIP. Analyzed the data: JGvdB.

Contributed reagents/materials/analysis tools: NJM DVF. Wrote the

paper: JGvdB RML. Dermatological advice: JPWvdV. Supervision and

medical advice: JDB. Supervision and immunological advice: CJM.

References

1. Smith JL, Jr., Stehlin JS, Jr. (1965) Spontaneous regression of primary malignant
melanomas with regional metastases. Cancer 18: 1399–1415.

2. Chen KG, Leapman RD, Zhang G, Lai B, Valencia JC, et al. (2009) Influence of
melanosome dynamics on melanoma drug sensitivity. J Natl Cancer Inst 101:

1259–1271. djp259 [pii];10.1093/jnci/djp259 [doi].

3. Bart RS, Porzio NR, Kopf AW, Vilcek JT, Cheng EH, et al. (1980) Inhibition of

growth of B16 murine malignant melanoma by exogenous interferon. Cancer
Res 40: 614–619.

4. Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, et al.
(1996) Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous

melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin
Oncol 14: 7–17.

5. Rosenberg SA, Mule JJ, Spiess PJ, Reichert CM, Schwarz SL (1985) Regression
of established pulmonary metastases and subcutaneous tumor mediated by the

systemic administration of high-dose recombinant interleukin 2. J Exp Med 161:

1169–1188.

6. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, et al. (1985)

Observations on the systemic administration of autologous lymphokine-activated

killer cells and recombinant interleukin-2 to patients with metastatic cancer.

N Engl J Med 313: 1485–1492.

7. Fang L, Lonsdorf AS, Hwang ST (2008) Immunotherapy for advanced
melanoma. J Invest Dermatol 128: 2596–2605.

8. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive
cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer

8: 299–308.

9. Overwijk WW (2005) Breaking tolerance in cancer immunotherapy: time to
ACT. Curr Opin Immunol 17: 187–194.

10. Adams S, O’Neill DW, Nonaka D, Hardin E, Chiriboga L, et al. (2008)
Immunization of malignant melanoma patients with full-length NY-ESO-1

protein using TLR7 agonist imiquimod as vaccine adjuvant. J Immunol 181:

776–784.

11. Lonsdorf AS, Kuekrek H, Stern BV, Boehm BO, Lehmann PV, et al. (2003)

Intratumor CpG-oligodeoxynucleotide injection induces protective antitumor T
cell immunity. J Immunol 171: 3941–3946.

12. Najar HM, Dutz JP (2008) Topical CpG enhances the response of murine

malignant melanoma to dacarbazine. J Invest Dermatol 128: 2204–2210.

MIC Therapy for Melanoma

PLoS ONE | www.plosone.org 11 May 2010 | Volume 5 | Issue 5 | e10626



13. Redondo P, del Olmo J, Lopez-Diaz dC, Inoges S, Marquina M, et al. (2007)

Imiquimod enhances the systemic immunity attained by local cryosurgery

destruction of melanoma lesions. J Invest Dermatol 127: 1673–1680.

14. Sidky YA, Borden EC, Weeks CE, Reiter MJ, Hatcher JF, et al. (1992)

Inhibition of murine tumor growth by an interferon-inducing imidazoquinoli-

namine. Cancer Res 52: 3528–3533.

15. Speiser DE, Lienard D, Rufer N, Rubio-Godoy V, Rimoldi D, et al. (2005)
Rapid and strong human CD8+ T cell responses to vaccination with peptide,

IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest 115: 739–746.

16. Wooldridge JE, Ballas Z, Krieg AM, Weiner GJ (1997) Immunostimulatory
oligodeoxynucleotides containing CpG motifs enhance the efficacy of monoclo-

nal antibody therapy of lymphoma. Blood 89: 2994–2998.

17. Ray CM, Kluk M, Grin CM, Grant-Kels JM (2005) Successful treatment of

malignant melanoma in situ with topical 5% imiquimod cream. Int J Dermatol
44: 428–434.

18. Luiten RM, Kueter EW, Mooi W, Gallee MP, Rankin EM, et al. (2005)

Immunogenicity, including vitiligo, and feasibility of vaccination with autologous

GM-CSF-transduced tumor cells in metastatic melanoma patients. J Clin Oncol
23: 8978–8991.

19. Gogas H, Ioannovich J, Dafni U, Stavropoulou-Giokas C, Frangia K, et al.

(2006) Prognostic significance of autoimmunity during treatment of melanoma
with interferon. N Engl J Med 354: 709–718. 354/7/709 [pii];10.1056/

NEJMoa053007 [doi].

20. Quaglino P, Marenco F, Osella-Abate S, Cappello N, Ortoncelli M, et al. (2010)

Vitiligo is an independent favourable prognostic factor in stage III and IV
metastatic melanoma patients: results from a single-institution hospital-based

observational cohort study. Ann Oncol 21: 409–414. mdp325 [pii];10.1093/

annonc/mdp325 [doi].

21. Boissy RE, Manga P (2004) On the etiology of contact/occupational vitiligo.
Pigment Cell Res 17: 208–214.

22. Kahn G (1970) Depigmentation caused by phenolic detergent germicides. Arch

Dermatol 102: 177–187.

23. Oliver EA, Schwartz L, Warren LH (1939) Occupational leukoderma. JAMA

113: 927.

24. Solano F, Briganti S, Picardo M, Ghanem G (2006) Hypopigmenting agents: an
updated review on biological, chemical and clinical aspects. Pigment Cell Res

19: 550–571.

25. Becker SW, Jr., Spencer MC (1962) Evaluation of monobenzone. JAMA 180:

279–284.

26. Forman L (1953) A note on the depigmentary properties of monobenzylether of

hydroquinone. Br J Dermatol 65: 406–409.

27. Mosher DB, Parrish JA, Fitzpatrick TB (1977) Monobenzylether of hydroqui-
none. A retrospective study of treatment of 18 vitiligo patients and a review of

the literature. Br J Dermatol 97: 669–679.

28. Grojean MF, Thivolet J, Perrot H (1982) Acquired leukomelanoderma caused

by topical depigmenting agents. Ann Dermatol Venereol 109: 641–647.

29. Lyon CC, Beck MH (1998) Contact hypersensitivity to monobenzyl ether of

hydroquinone used to treat vitiligo. Contact Dermatitis 39: 132–133.

30. McGuire J, Hendee J (1971) Biochemical basis for depigmentation of skin by
phenolic germicides. J Invest Dermatol 57: 256–261.

31. Manini P, Napolitano A, Westerhof W, Riley PA, d’Ischia M (2009) A Reactive

ortho-Quinone Generated by Tyrosinase-Catalyzed Oxidation of the Skin
Depigmenting Agent Monobenzone: Self-Coupling and Thiol-Conjugation

Reactions and Possible Implications for Melanocyte Toxicity. Chem Res

Toxicol.

32. Menter JM, Etemadi AA, Chapman W, Hollins TD, Willis I (1993) In vivo
depigmentation by hydroxybenzene derivatives. Melanoma Res 3: 443–449.

33. Tayama K, Takahama M (2002) Depigmenting action of phenylhydroquinone,

an O-phenylphenol metabolite, on the skin of JY-4 black guinea-pigs. Pigment
Cell Res 15: 447–453. 2o057 [pii].

34. van den Boorn JG, Konijnenberg D, Dellemijn TA, van der Veen JP, Bos JD,

et al. (2009) Autoimmune Destruction of Skin Melanocytes by Perilesional T
Cells from Vitiligo Patients. J Invest Dermatol.

35. Sharma S, Karakousis CP, Takita H, Shin K, Brooks SP (2003) Intra-tumoral
injection of CpG results in the inhibition of tumor growth in murine Colon-26

and B-16 tumors. Biotechnol Lett 25: 149–153.

36. Switaj T, Jalili A, Jakubowska AB, Drela N, Stoksik M, et al. (2004) CpG
immunostimulatory oligodeoxynucleotide 1826 enhances antitumor effect of

interleukin 12 gene-modified tumor vaccine in a melanoma model in mice. Clin
Cancer Res 10: 4165–4175. 10.1158/1078-0432.CCR-04-0022 [doi];10/12/

4165 [pii].
37. Berghofer B, Haley G, Frommer T, Bein G, Hackstein H (2007) Natural and

synthetic TLR7 ligands inhibit CpG-A- and CpG-C-oligodeoxynucleotide-

induced IFN-alpha production. J Immunol 178: 4072–4079. 178/7/4072 [pii].
38. Liu C, Lou Y, Lizee G, Qin H, Liu S, et al. (2008) Plasmacytoid dendritic cells

induce NK cell-dependent, tumor antigen-specific T cell cross-priming and
tumor regression in mice. J Clin Invest 118: 1165–1175.

39. Schuurhuis DH, van Montfoort N, Ioan-Facsinay A, Jiawan R, Camps M, et al.

(2006) Immune complex-loaded dendritic cells are superior to soluble immune
complexes as antitumor vaccine. J Immunol 176: 4573–4580.

40. van den Boorn JG, Le Poole IC, Luiten RM (2006) T-cell avidity and tuning: the
flexible connection between tolerance and autoimmunity. Int Rev Immunol 25:

235–258.
41. Nazih A, Benezra C, Lepoittevin JP (1993) Bihaptens with 5- and 6-methyl-

substituted alkylcatechols and methylene lactone functional groups: tools for

hapten (allergen or tolerogen)-protein interaction studies. Chem Res Toxicol 6:
215–222.

42. Palm NW, Medzhitov R (2009) Immunostimulatory activity of haptenated
proteins. Proc Natl Acad Sci U S A 106: 4782–4787.

43. Hariharan V, Klarquist J, Reust MJ, Koshoffer A, McKee MD, et al. (2009)

Monobenzyl Ether of Hydroquinone and 4-Tertiary Butyl Phenol Activate
Markedly Different Physiological Responses in Melanocytes: Relevance to Skin

Depigmentation. J Invest Dermatol;jid2009214 [pii];10.1038/jid.2009.214
[doi].

44. Cormier JN, Abati A, Fetsch P, Hijazi YM, Rosenberg SA, et al. (1998)
Comparative analysis of the in vivo expression of tyrosinase, MART-1/Melan-

A, and gp100 in metastatic melanoma lesions: implications for immunotherapy.

J Immunother 21: 27–31.
45. Anbar TS, Abdel-Raouf H, Awad SS, Ragaie MH, Abdel-Rahman AT (2009)

The hair follicle melanocytes in vitiligo in relation to disease duration. J Eur
Acad Dermatol Venereol 23: 934–939. JDV3233 [pii];10.1111/j.1468-

3083.2009.03233.x [doi].

46. Meyer KC, Klatte JE, Dinh HV, Harries MJ, Reithmayer K, et al. (2008)
Evidence that the bulge region is a site of relative immune privilege in human

hair follicles. Br J Dermatol 159: 1077–1085. BJD8818 [pii];10.1111/j.1365-
2133.2008.08818.x [doi].

47. Ruckert R, Hofmann U, van der Veen C, Bulfone-Paus S, Paus R (1998) MHC
class I expression in murine skin: developmentally controlled and strikingly

restricted intraepithelial expression during hair follicle morphogenesis and

cycling, and response to cytokine treatment in vivo. J Invest Dermatol 111:
25–30. 10.1046/j.1523-1747.1998.00228.x [doi].

48. Khan S, Bijker MS, Weterings JJ, Tanke HJ, Adema GJ, et al. (2007) Distinct
uptake mechanisms but similar intracellular processing of two different toll-like

receptor ligand-peptide conjugates in dendritic cells. J Biol Chem 282:

21145–21159.

MIC Therapy for Melanoma

PLoS ONE | www.plosone.org 12 May 2010 | Volume 5 | Issue 5 | e10626


