821 research outputs found

    Neural substrates for the distinct effects of presynaptic group III metabotropic glutamate receptors on extinction of contextual fear conditioning in mice

    Get PDF
    The group III metabotropic glutamate (mGlu) receptors mGlu7 and mGlu8 are receiving increased attention as potential novel therapeutic targets for anxiety disorders. The effects mediated by these receptors appear to result from a complex interplay of facilitatory and inhibitory actions at different brain sites in the anxiety/fear circuits. To better understand the effect of mGlu7 and mGlu8 receptors on extinction of contextual fear and their critical sites of action in the fear networks, we focused on the amygdala. Direct injection into the basolateral complex of the amygdala of the mGlu7 receptor agonist AMN082 facilitated extinction, whereas the mGlu8 receptor agonist (S)-3,4-DCPG sustained freezing during the extinction acquisition trial. We also determined at the ultrastructural level the synaptic distribution of these receptors in the basal nucleus (BA) and intercalated cell clusters (ITCs) of the amygdala. Both areas are thought to exert key roles in fear extinction. We demonstrate that mGlu7 and mGlu8 receptors are located in different presynaptic terminals forming both asymmetric and symmetric synapses, and that they preferentially target neurons expressing mGlu1α receptors mostly located around ITCs. In addition we show that mGlu7 and mGlu8 receptors were segregated to different inputs to a significant extent. In particular, mGlu7a receptors were primarily onto glutamatergic afferents arising from the BA or midline thalamic nuclei, but not the medial prefrontal cortex (mPFC), as revealed by combined anterograde tracing and pre-embedding electron microscopy. On the other hand, mGlu8a showed a more restricted distribution in the BA and appeared absent from thalamic, mPFC and intrinsic inputs. This segregation of mGlu7 and mGlu8 receptors in different neuronal pathways of the fear circuit might explain the distinct effects on fear extinction training observed with mGlu7 and mGlu8 receptor agonists. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'. © 2012 Elsevier Ltd. All rights reserved

    Localization, Coulomb interactions and electrical heating in single-wall carbon nanotubes/polymer composites

    Full text link
    Low field and high field transport properties of carbon nanotubes/polymer composites are investigated for different tube fractions. Above the percolation threshold f_c=0.33%, transport is due to hopping of localized charge carriers with a localization length xi=10-30 nm. Coulomb interactions associated with a soft gap Delta_CG=2.5 meV are present at low temperature close to f_c. We argue that it originates from the Coulomb charging energy effect which is partly screened by adjacent bundles. The high field conductivity is described within an electrical heating scheme. All the results suggest that using composites close to the percolation threshold may be a way to access intrinsic properties of the nanotubes by experiments at a macroscopic scale.Comment: 4 pages, 5 figures, Submitted to Phys. Rev.

    Testing the paradox of enrichment along a land use gradient in a multitrophic aboveground and belowground community

    Get PDF
    In the light of ongoing land use changes, it is important to understand how multitrophic communities perform at different land use intensities. The paradox of enrichment predicts that fertilization leads to destabilization and extinction of predator-prey systems. We tested this prediction for a land use intensity gradient from natural to highly fertilized agricultural ecosystems. We included multiple aboveground and belowground trophic levels and land use-dependent searching efficiencies of insects. To overcome logistic constraints of field experiments, we used a successfully validated simulation model to investigate plant responses to removal of herbivores and their enemies. Consistent with our predictions, instability measured by herbivore-induced plant mortality increased with increasing land use intensity. Simultaneously, the balance between herbivores and natural enemies turned increasingly towards herbivore dominance and natural enemy failure. Under natural conditions, there were more frequently significant effects of belowground herbivores and their natural enemies on plant performance, whereas there were more aboveground effects in agroecosystems. This result was partly due to the “boom-bust” behavior of the shoot herbivore population. Plant responses to herbivore or natural enemy removal were much more abrupt than the imposed smooth land use intensity gradient. This may be due to the presence of multiple trophic levels aboveground and belowground. Our model suggests that destabilization and extinction are more likely to occur in agroecosystems than in natural communities, but the shape of the relationship is nonlinear under the influence of multiple trophic interactions.

    An all-sky search algorithm for continuous gravitational waves from spinning neutron stars in binary systems

    Full text link
    Rapidly spinning neutron stars with non-axisymmetric mass distributions are expected to generate quasi-monochromatic continuous gravitational waves. While many searches for unknown, isolated spinning neutron stars have been carried out, there have been no previous searches for unknown sources in binary systems. Since current search methods for unknown, isolated neutron stars are already computationally limited, expanding the parameter space searched to include binary systems is a formidable challenge. We present a new hierarchical binary search method called TwoSpect, which exploits the periodic orbital modulations of the continuous waves by searching for patterns in doubly Fourier-transformed data. We will describe the TwoSpect search pipeline, including its mitigation of detector noise variations and corrections for Doppler frequency modulation caused by changing detector velocity. Tests on Gaussian noise and on a set of simulated signals will be presented.Comment: 22 pages, 10 figures, 1 table, Submitted to Classical and Quantum Gravit

    An integrated palaeoenvironmental investigation of a 6200 year old peat sequence from Ile de la Possession, Iles Crozet, sub-Antarctica

    No full text
    International audienceA 6200 year old peat sequence, cored in a volcanic crater on the sub-Antarctic Ile de la Possession (Iles Crozet), has been investigated, based on a multi-proxy approach. The methods applied are macrobotanical (mosses, seeds and fruits) and diatom analyses, complemented by geochemical (Rock-Eval6) and rock magnetic measurements. The chronology of the core is based on 5 radiocarbon dates. When combining all the proxy data the following changes could be inferred. From the onset of the peat formation (6200 cal yr BP) until ca. 5550 cal yr BP, biological production was high and climatic conditions must have been relatively warm. At ca. 5550 cal yr BP a shift to low biological production occurred, lasting until ca. 4600 cal yr BP. During this period the organic matter is well preserved, pointing to a cold and/or wet environment. At ca. 4600 cal yr BP, biological production increased again. From ca. 4600 cal yr BP until ca. 4100 cal yr BP a “hollow and hummock” micro topography developed at the peat surface, resulting in the presence of a mixture of wetter and drier species in the macrobotanical record. After ca. 4100 cal yr BP, the wet species disappear and a generally drier, acidic bog came into existence. A major shift in all the proxy data is observed at ca. 2800 cal yr BP, pointing to wetter and especially windier climatic conditions on the island probably caused by an intensification and/or latitudinal shift of the southern westerly belt. Caused by a stronger wind regime, erosion of the peat surface occurred at that time and a lake was formed in the peat deposits of the crater, which is still present today

    Segregated tunneling-percolation model for transport nonuniversality

    Full text link
    We propose a theory of the origin of transport nonuniversality in disordered insulating-conducting compounds based on the interplay between microstructure and tunneling processes between metallic grains dispersed in the insulating host. We show that if the metallic phase is arranged in quasi-one dimensional chains of conducting grains, then the distribution function of the chain conductivities g has a power-law divergence for g -> 0 leading to nonuniversal values of the transport critical exponent t. We evaluate the critical exponent t by Monte Carlo calculations on a cubic lattice and show that our model can describe universal as well nonuniversal behavior of transport depending on the value of few microstructural parameters. Such segregated tunneling-percolation model can describe the microstructure of a quite vast class of materials known as thick-film resistors which display universal or nonuniversal values of t depending on the composition.Comment: 8 pages, 5 figures (Phys. Rev. B - 1 August 2003)(fig1 replaced

    Naturally Occurring Lipid A Mutants in Neisseria meningitidis from Patients with Invasive Meningococcal Disease Are Associated with Reduced Coagulopathy

    Get PDF
    Neisseria meningitidis is a major cause of bacterial meningitis and sepsis worldwide. Lipopolysaccharide (LPS), a major component of the Gram-negative bacterial outer membrane, is sensed by mammalian cells through Toll-like receptor 4 (TLR4), resulting in activation of proinflammatory cytokine pathways. TLR4 recognizes the lipid A moiety of the LPS molecule, and the chemical composition of the lipid A determines how well it is recognized by TLR4. N. meningitidis has been reported to produce lipid A with six acyl chains, the optimal number for TLR4 recognition. Indeed, meningococcal sepsis is generally seen as the prototypical endotoxin-mediated disease. In the present study, we screened meningococcal disease isolates from 464 patients for their ability to induce cytokine production in vitro. We found that around 9% of them were dramatically less potent than wild-type strains. Analysis of the lipid A of several of the low-activity strains by mass spectrometry revealed they were penta-acylated, suggesting a mutation in the lpxL1 or lpxL2 genes required for addition of secondary acyl chains. Sequencing of these genes showed that all the low activity strains had mutations that inactivated the lpxL1 gene. In order to see whether lpxL1 mutants might give a different clinical picture, we investigated the clinical correlate of these mutations in a prospective nationwide observational cohort study of adults with meningococcal meningitis. Patients infected with an lpxL1 mutant presented significantly less frequently with rash and had higher thrombocyte counts, consistent with reduced cytokine induction and less activation of tissue-factor mediated coagulopathy. In conclusion, here we report for the first time that a surprisingly large fraction of meningococcal clinical isolates have LPS with underacylated lipid A due to mutations in the lpxL1 gene. The resulting low-activity LPS may have an important role in virulence by aiding the bacteria to evade the innate immune system. Our results provide the first example of a specific mutation in N. meningitidis that can be correlated with the clinical course of meningococcal disease

    Dendritic cells potently purge latent HIV-1 beyond TCR-stimulation, activating the PI3K-Akt-mTOR pathway

    Get PDF
    © 2019 Background: The latent HIV-1 reservoir in treated patients primarily consists of resting memory CD4 + T cells. Stimulating the T-cell receptor (TCR), which facilitates transition of resting into effector T cells, is the most effective strategy to purge these latently infected cells. Here we supply evidence that TCR-stimulated effector T cells still frequently harbor latent HIV-1. Methods: Primary HIV-1 infected cells were used in a latency assay with or without dendritic cells (DCs) and reversion of HIV-1 latency was determined, in the presence or absence of specific pathway inhibitors. Findings: Renewed TCR-stimulation or subsequent activation with latency reversing agents (LRAs) did not overcome latency. However, interaction of infected effector cells with DCs triggered further activation of latent HIV-1. When compared to TCR-stimulation only, CD4 + T cells from aviremic patients receiving TCR + DC-stimulation reversed latency more frequently. Such a “one-two punch” strategy seems ideal for purging the reservoir. We determined that DC contact activates the PI3K-Akt-mTOR pathway in CD4 + T cells. Interpretation: This insight could facilitate the development of a novel class of potent LRAs that purge latent HIV beyond levels reached by T-cell activation
    • 

    corecore