23 research outputs found
Current Advances, Research Needs and Gaps in Mycotoxins Biomonitoring under the HBM4EU-Lessons Learned and Future Trends
ReviewThis article belongs to the Special Issue Human Biomonitoring and Risk Assessment of Mycotoxins.Mycotoxins are natural metabolites produced by fungi that contaminate food and feed
worldwide. They can pose a threat to human and animal health, mainly causing chronic effects, e.g.,
immunotoxic and carcinogenic. Due to climate change, an increase in European population exposure
to mycotoxins is expected to occur, raising public health concerns. This urges us to assess the current
human exposure to mycotoxins in Europe to allow monitoring exposure and prevent future health
impacts. The mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1) were considered as priority
substances to be studied within the European Human Biomonitoring Initiative (HBM4EU) to generate
knowledge on internal exposure and their potential health impacts. Several policy questions were
addressed concerning hazard characterization, exposure and risk assessment. The present article
presents the current advances attained under the HBM4EU, research needs and gaps. Overall, the
knowledge on the European population risk from exposure to DON was improved by using new
harmonised data and a newly derived reference value. In addition, mechanistic information on FB1
was, for the first time, organized into an adverse outcome pathway for a congenital anomaly. It is
expected that this knowledge will support policy making and contribute to driving new Human
Biomonitoring (HBM) studies on mycotoxin exposure in Europe.This study was co-funded by the HBM4EU, which has received funding from the European Union’s research and innovation programme Horizon 2020 under grant agreement No. 733032, and from the authors’ institutions. Thanks are due to CESAM(UIDP/50017/2020+UIDB/50017/2020+LA/P/0094/2020), and ToxOmics (UIDB/00009/2020; UIDP/00009/2020), through national funds. L.B. thanks Research Infrastructure RECETOX RI (No. LM2018121), financed by the Ministry of Education, Youth and Sports, and the project CETOCOEN EXCELLENCE (No. CZ.02.1.01/0.0/0.0/17_043/0009632) for a supportive background of the European Union’s Horizon 2020 research and innovation program under grant agreement No. 857560, and to the HBM4EU, under grant agreement No. 733032.info:eu-repo/semantics/publishedVersio
lessons learned and future trends
Funding Information: Thanks are due to CESAM (UIDP/50017/2020+UIDB/50017/2020+LA/P/0094/2020), and ToxOmics (UIDB/00009/2020; UIDP/00009/2020), through national funds. L.B. thanks Research Infrastructure RECETOX RI (No. LM2018121), financed by the Ministry of Education, Youth and Sports, and the project CETOCOEN EXCELLENCE (No. CZ.02.1.01/0.0/0.0/17_043/0009632) for a supportive background of the European Union’s Horizon 2020 research and innovation program under grant agreement No. 857560, and to the HBM4EU, under grant agreement No. 733032. This publication reflects only the authors’ view and the European Commission is not responsible for any use that may be made of the information it contains. Funding Information: This study was co-funded by the HBM4EU, which has received funding from the European Union’s research and innovation programme Horizon 2020 under grant agreement No. 733032, and from the authors’ institutions. Publisher Copyright: © 2022 by the authors.Mycotoxins are natural metabolites produced by fungi that contaminate food and feed worldwide. They can pose a threat to human and animal health, mainly causing chronic effects, e.g., immunotoxic and carcinogenic. Due to climate change, an increase in European population exposure to mycotoxins is expected to occur, raising public health concerns. This urges us to assess the current human exposure to mycotoxins in Europe to allow monitoring exposure and prevent future health impacts. The mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1) were considered as priority substances to be studied within the European Human Biomonitoring Initiative (HBM4EU) to generate knowledge on internal exposure and their potential health impacts. Several policy questions were addressed concerning hazard characterization, exposure and risk assessment. The present article presents the current advances attained under the HBM4EU, research needs and gaps. Overall, the knowledge on the European population risk from exposure to DON was improved by using new harmonised data and a newly derived reference value. In addition, mechanistic information on FB1 was, for the first time, organized into an adverse outcome pathway for a congenital anomaly. It is expected that this knowledge will support policy making and contribute to driving new Human Biomonitoring (HBM) studies on mycotoxin exposure in Europe.publishersversionpublishe
Application of AOPs to assist regulatory assessment of chemical risks - Case studies, needs and recommendations
While human regulatory risk assessment (RA) still largely relies on animal studies, new approach methodologies (NAMs) based on in vitro, in silico or non-mammalian alternative models are increasingly used to evaluate chemical hazards. Moreover, human epidemiological studies with biomarkers of effect (BoE) also play an invaluable role in identifying health effects associated with chemical exposures. To move towards the next generation risk assessment (NGRA), it is therefore crucial to establish bridges between NAMs and standard approaches, and to establish processes for increasing mechanistically-based biological plausibility in human studies. The Adverse Outcome Pathway (AOP) framework constitutes an important tool to address these needs but, despite a significant increase in knowledge and awareness, the use of AOPs in chemical RA remains limited. The objective of this paper is to address issues related to using AOPs in a regulatory context from various perspectives as it was discussed in a workshop organized within the European Union partnerships HBM4EU and PARC in spring 2022. The paper presents examples where the AOP framework has been proven useful for the human RA process, particularly in hazard prioritization and characterization, in integrated approaches to testing and assessment (IATA), and in the identification and validation of BoE in epidemiological studies. Nevertheless, several limitations were identified that hinder the optimal usability and acceptance of AOPs by the regulatory community including the lack of quantitative information on response-response relationships and of efficient ways to map chemical data (exposure and toxicity) onto AOPs. The paper summarizes suggestions, ongoing initiatives and third-party tools that may help to overcome these obstacles and thus assure better implementation of AOPs in the NGRA
Anti-tumor properties of methoxylated analogues of resveratrol in malignant MCF-7 but not in non-tumorigenic MCF-10A mammary epithelial cell lines
Resveratrol is a plant-derived polyphenol that is known for its anti-inflammatory and anti-tumorigenic properties in in vitro and in vivo models. Recent studies show that some resveratrol analogues might be more potent anti-tumor agents, which may partly be attributed to their ability to activate the aryl hydrocarbon receptor (AHR). Here, the anti-tumorigenic properties of resveratrol and structural analogues oxyresveratrol, pinostilbene, pterostilbene and tetramethoxystilbene (TMS) were studied in vitro, using in the malignant human MCF-7 breast cancer cell line and non-tumorigenic breast epithelial cell line MCF-10A. Cell viability and migration assays showed that methoxylated analogues of resveratrol are more potent anti-tumorigenic compounds than resveratrol and its hydroxylated analogue oxyresveratrol, with 2,3’,4,5’-tetramethoxy-trans-stilbene (TMS) being the most potent compound. TMS decreased MCF-7 tumor cell viability with 50% at 3.6 μM and inhibited migration with 37.5 ± 14.8% at 3 μM. In addition, TMS activated the AHR more potently (EC50 in a reporter gene assay 2.0 μM) and induced AHR-mediated induction of cytochrome P450 1A1 (CYP1A1) activity (EC50 value of 0.7 μM) more than resveratrol and the other analogues tested. Cell cycle analysis showed that TMS induced a shift in cell cycle status from the G1 to the G2/M phase causing a cell cycle arrest in the MCF-7 cells, while no effect of TMS was observed in the non-tumorigenic MCF-10A mammary epithelial cell line. Gene expression analysis showed that 3 μM TMS increased gene expression of CYP1A1 (289-fold), CYP1B1 (5-fold) and Nqo1 (2-fold), and decreased gene expression of IL-8 (3-fold) in MCF-7 cells. In MCF-10A cells, 10 μM TMS also increased gene expression of CYP1A1 (5-fold) and CYP1B1 (2-fold), but decreased gene expression of Nqo1 (1.4-fold) in contrast to MCF-7 cells. TMS displays more potent anti-tumorigenic properties and activates the AHR more effectively than resveratrol. In addition, this is the first study to show that TMS, but not resveratrol, selectively inhibits the cell cycle of breast tumor cells and not the non-tumorigenic cells. Our study provides more insight in the anti-tumor properties of the methoxylated analogues of resveratrol in breast cells in vitro
Human Biomonitoring Guidance Values for Deoxynivalenol Derived under the European Human Biomonitoring Initiative (HBM4EU)
The mycotoxin deoxynivalenol (DON) was one of the priority substances in the European Joint Human Biomonitoring Initiative (HBM4EU) project. In this study, to better interpret the actual internal exposure of DON in the general population and safeguard public health, human biomonitoring guidance values of DON for the general population (HBM-GVGenPop) were derived. The HBM-GVGenPop of DON was based on either the total DON (DON and its glucuronides) or DON’s main metabolite (DON-15-GlcA) levels in 24-h urine samples, resulting in a HBM-GVGenPop of 0.023 µg/mL for the total DON or a HBM-GVGenPop of 0.020 µg/mL for DON-15-GlcA. The use of 24-h urine samples is recommended based on the fact that DON and its metabolites have a short elimination half-life (T1/2), and 95% of the cumulative amount was excreted within 12 h after DON intake. The T1/2 for DON, DON-15-GlcA, and total DON were estimated to be 2.55 h, 2.95 h, and 2.95 h, respectively. Therefore, a 24-h urine sample reflects almost all of the DON exposure from the previous day, and this type of sample was considered for the derivation of a HBM-GVGenPop for DON
Combined Exposure to Multiple Mycotoxins: An Example of Using a Tiered Approach in a Mixture Risk Assessment.
Humans are exposed to mycotoxins on a regular basis. Exposure to a mixture of mycotoxins may, therefore, result in a combination of adverse effects, or trigger the same effects. This should be accounted for when assessing the combined risk of multiple mycotoxins. Here, we show the outcome of using different approaches in assessing the risks related to the combined exposure to mycotoxins. We performed a tiered approach using assessment groups with a common target organ (kidney, liver and haematologic system), or a common adverse effect (phenomenon) (reduced white blood cell count), to combine the exposure to mycotoxins. The combined exposure was calculated for the individuals in this assessment, using the Monte Carlo Risk Assessment (MCRA) tool. The risk related to this combined exposure was assessed using toxicological reference values, e.g., health based guidance values. We show that estimating the combined risk by adding the single compounds’ risk distributions slightly overestimates the combined risk in the 95th percentile, as compared to combining the exposures at an individual level. We also show that relative potency factors can be used to refine the mixture risk assessment, as compared to ratios of toxicological reference values with different effect sizes and assessment factors
Anti-tumor properties of methoxylated analogues of resveratrol in malignant MCF-7 but not in non-tumorigenic MCF-10A mammary epithelial cell lines
Resveratrol is a plant-derived polyphenol that is known for its anti-inflammatory and anti-tumorigenic properties in in vitro and in vivo models. Recent studies show that some resveratrol analogues might be more potent anti-tumor agents, which may partly be attributed to their ability to activate the aryl hydrocarbon receptor (AHR). Here, the anti-tumorigenic properties of resveratrol and structural analogues oxyresveratrol, pinostilbene, pterostilbene and tetramethoxystilbene (TMS) were studied in vitro, using in the malignant human MCF-7 breast cancer cell line and non-tumorigenic breast epithelial cell line MCF-10A. Cell viability and migration assays showed that methoxylated analogues of resveratrol are more potent anti-tumorigenic compounds than resveratrol and its hydroxylated analogue oxyresveratrol, with 2,3’,4,5’-tetramethoxy-trans-stilbene (TMS) being the most potent compound. TMS decreased MCF-7 tumor cell viability with 50% at 3.6 μM and inhibited migration with 37.5 ± 14.8% at 3 μM. In addition, TMS activated the AHR more potently (EC50 in a reporter gene assay 2.0 μM) and induced AHR-mediated induction of cytochrome P450 1A1 (CYP1A1) activity (EC50 value of 0.7 μM) more than resveratrol and the other analogues tested. Cell cycle analysis showed that TMS induced a shift in cell cycle status from the G1 to the G2/M phase causing a cell cycle arrest in the MCF-7 cells, while no effect of TMS was observed in the non-tumorigenic MCF-10A mammary epithelial cell line. Gene expression analysis showed that 3 μM TMS increased gene expression of CYP1A1 (289-fold), CYP1B1 (5-fold) and Nqo1 (2-fold), and decreased gene expression of IL-8 (3-fold) in MCF-7 cells. In MCF-10A cells, 10 μM TMS also increased gene expression of CYP1A1 (5-fold) and CYP1B1 (2-fold), but decreased gene expression of Nqo1 (1.4-fold) in contrast to MCF-7 cells. TMS displays more potent anti-tumorigenic properties and activates the AHR more effectively than resveratrol. In addition, this is the first study to show that TMS, but not resveratrol, selectively inhibits the cell cycle of breast tumor cells and not the non-tumorigenic cells. Our study provides more insight in the anti-tumor properties of the methoxylated analogues of resveratrol in breast cells in vitro
A prioritization strategy for functional alternatives to bisphenol A in food contact materials
The use of bisphenol A (BPA), a substance of very high concern, is proposed to be banned in food contact materials (FCMs) in the European Union. To prevent regrettable substitution of BPA by alternatives with similar or unknown hazardous properties, it is of importance to gain the relevant toxicological information on potential BPA alternative substances and monitor them adequately. We created an inventory of over 300 substances mentioned as potential BPA alternatives in regulatory reports and scientific literature. This study presents a prioritization strategy to identify substances that may be used as an alternative to BPA in FCMs. We prioritized 20 potential BPA alternatives of which 10 are less familiar. We subsequently reviewed the available information on the 10 prioritized less familiar substances regarding hazard profiles and migration potential obtained from scientific literature and in silico screening tools to identify a possible risk of the substances. Major data gaps regarding the hazard profiles of the prioritized substances exist, although the scarce available data give some indications on the possible hazard for some of the substances (like bisphenol TMC, 4,4-dihydroxybenzophenone, and tetrachlorobisphenol A). In addition, very little is known about the actual use and exposure to these substances. More toxicological research and monitoring of these substances in FCMs are, therefore, required to avoid regrettable substitution of BPA in FCM
Development of a Generic PBK Model for Human Biomonitoring with an Application to Deoxynivalenol
Toxicokinetic modelling provides a powerful tool in relating internal human exposure (i.e., assessed through urinary biomarker levels) to external exposure. Chemical specific toxicokinetic models are available; however, this specificity prevents their application to similar contaminants or to other routes of exposure. For this reason, we investigated whether a generic physiological-based kinetic (PBK) model might be a suitable alternative for a biokinetic model of deoxynivalenol (DON). IndusChemFate (ICF) was selected as a generic PBK model, which could be fit for purpose. Being suited for simulating multiple routes of exposure, ICF has particularly been used to relate the inhalation and dermal exposure of industrial chemicals to their urinary excretion. For the first time, the ICF model was adapted as a generic model for the human biomonitoring of mycotoxins, thereby extending its applicability domain. For this purpose, chemical-specific data for DON and its metabolites were collected directly from the literature (distribution and metabolism) or indirectly (absorption and excretion) by fitting the ICF model to previously described urinary excretion data. The obtained results indicate that this generic model can be used to model the urinary excretion of DON and its glucuronidated metabolites following dietary exposure to DON. Additionally, the present study establishes the basis for further development of the model to include an inhalation exposure route alongside the oral exposure route
Annexes to the EFSA external scientific report "Proposed prospective scenarios for cumulative risk assessment of pesticide residues"
In the context of prospective cumulative risk assessment of pesticides, different options and scenarios for a tiered approach were investigated by means of 15 case studies for the cumulative assessment group associated with an effect on the motor division of the nervous system (CAG-NAM) and 15 case studies for the cumulative assessment group associated with an effect on hypothyroidism (CAG-TCF) (doi:10.2903/sp.efsa.2021.EN-6811). The results of the prospective exposure calculations are reported in the following annexes: Annex A: Acute exposure calculations - CAG-NAM Annex B: Chronic exposure calculations - CAG-TCF Annex C: Results supporting the discussion on prospective acute scenarios - CAG-NAM Annex D: Results supporting the discussion on prospective chronic scenarios - CAG-TCF The case studies reported above also include fictitious data, which were included for assessing the relevance of the various parameters in these calculations. The results of these case studies do not represent real estimates of exposure or risk, nor do they represent the formal outcome of a risk assessment