45 research outputs found
Adverse environmental conditions influence age-related innate immune responsiveness
BACKGROUND-: The innate immune system plays an important role in the recognition and induction of protective responses against infectious pathogens, whilst there is increasing evidence for a role in mediating chronic inflammatory diseases at older age. Despite indications that environmental conditions can influence the senescence process of the adaptive immune system, it is not known whether the same holds true for the innate immune system. Therefore we studied whether age-related innate immune responses are similar or differ between populations living under very diverse environmental conditions. METHODS-: We compared cross-sectional age-related changes in ex vivo innate cytokine responses in a population living under affluent conditions in the Netherlands (age 20–68 years old, n = 304) and a population living under adverse environmental conditions in Ghana (age 23–95 years old, n = 562). RESULTS-: We found a significant decrease in LPS-induced Interleukin (IL)-10 and Tumor Necrosis Factor (TNF) production with age in the Dutch population. In Ghana a similar age-related decline in IL-10 responses to LPS, as well as to zymosan, or LPS plus zymosan, was observed. TNF production, however, did not show an age-associated decline, but increased significantly with age in response to co-stimulation with LPS and zymosan. CONCLUSION-: We conclude that the decline in innate cytokine responses is an intrinsic ageing phenomenon, while pathogen exposure and/or selective survival drive pro-inflammatory responses under adverse living conditions
Pneumococcal carriage, serotype distribution, and antimicrobial susceptibility in Papua New Guinean children vaccinated with PCV10 or PCV13 in a head-to-head trial
Background: Children in Papua New Guinea (PNG) are at high risk of pneumococcal infections. We investigated pneumococcal carriage rates, serotype distribution, and antimicrobial susceptibility in PNG children after vaccination with 10-valent or 13-valent pneumococcal conjugate vaccines (PCV10; PCV13). Methods: Infants (N = 262) were randomized to receive 3 doses of PCV10 or PCV13 at 1-2-3 months of age, followed by pneumococcal polysaccharide vaccination (PPV) or no PPV at 9 months of age. Nasopharyngeal swabs (NPS) collected at ages 1, 4, 9, 10, 23 and 24 months were cultured using standard bacteriological procedures. Morphologically distinct Streptococcus pneumoniae colonies were serotyped by the Quellung reaction. Antimicrobial susceptibility was determined by Kirby-Bauer disc diffusion and minimum inhibitory concentration (MIC). Results: S. pneumoniae was isolated from 883/1063 NPS collected at 1–23 months of age, including 820 serotypeable (64 different serotypes) and 144 non-serotypeable isolates. At age 23 months, 93.6% (95%CI 86.6–97.6%) of PCV10 recipients and 88.6% (95%CI 80.1–94.4%) of PCV13 recipients were pneumococcal carriers, with higher carriage of PCV10 serotypes by PCV10 recipients (19.8%, 95%CI 12.2–29.5) than PCV13 recipients (9.3%, 95%CI 4.1–17.3) (p = 0.049). There were no other statistically significant differences between PCV10 and PCV13 recipients and children receiving PPV or no PPV. Nearly half (45.6%) of carried pneumococci were non-susceptible to penicillin based on the meningitis breakpoint (MI
Ontogeny of Toll-Like and NOD-Like Receptor-Mediated Innate Immune Responses in Papua New Guinean Infants
Studies addressing the ontogeny of the innate immune system in early life have reported mainly on Toll-like receptor (TLR) responses in infants living in high-income countries, with little or even no information on other pattern recognition receptors or on early life innate immune responses in children living under very different environmental conditions in less-developed parts of the world. In this study, we describe whole blood innate immune responses to both Toll-like and nucleotide-binding oligomerization domain (NOD)-like receptor agonists including the widely used vaccine adjuvant ‘alum’ in a group of Papua New Guinean infants aged 1–3 (n = 18), 4–6 (n = 18), 7–12 (n = 21) and 13–18 (n = 10) months old. Depending on the ligands and cytokines studied, different age-related patterns were found: alum-induced IL-1β and CXCL8 responses were found to significantly decline with increasing age; inflammatory (IL-6, IL-1β, IFN-γ) responses to TLR2 and TLR3 agonists increased; and IL-10 responses remained constant or increased during infancy, while TNF-α responses either declined or remained the same. We report for the first time that whole blood innate immune responses to the vaccine adjuvant alum decrease with age in infancy; a finding that may imply that the adjuvant effect of alum in pediatric vaccines could be age-related. Our findings further suggest that patterns of innate immune development may vary between geographically diverse populations, which in line with the ‘hygiene hypothesis’ particularly involves persistence of innate IL-10 responses in populations experiencing higher infectious pressure
Safety and Immunogenicity of Neonatal Pneumococcal Conjugate Vaccination in Papua New Guinean Children: A Randomised Controlled Trial
Background: Approximately 826,000 children, mostly young infants, die annually from invasive pneumococcal disease. A 6-10-14-week schedule of pneumococcal conjugate vaccine (PCV) is efficacious but neonatal PCV may provide earlier protection and better coverage. We conducted an open randomized controlled trial in Papua New Guinea to compare safety, immunogenicity and priming for memory of 7-valent PCV (PCV7) given in a 0-1-2-month (neonatal) schedule with that of the routine 1-2-3-month (infant) schedule. Methods: We randomized 318 infants at birth to receive PCV7 in the neonatal or infant schedule or no PCV7. All infants received 23-valent pneumococcal polysaccharide vaccine (PPV) at age 9 months. Serotype-specific serum IgG for PCV7 (VT) serotypes and non-VT serotypes 2, 5 and 7F were measured at birth and 2, 3, 4, 9, 10 and 18 months of age. Primary outcomes were geometric mean concentrations (GMCs) and proportions with concentration ≥0.35 µg/ml of VT serotype-specific pneumococcal IgG at age 2 months and one month post-PPV.Results: We enrolled 101, 105 and 106 infants, respectively, into neonatal, infant and control groups. Despite high background levels of maternally derived antibody, both PCV7 groups had higher GMCs than controls at age 2 months for serotypes 4 (p<0.001) and 9V (p<0.05) and at age 3 months for all VTs except 6B. GMCs for serotypes 4, 9V, 18C and 19F were significantly higher (p<0.001) at age 2 months in the neonatal (one month post-dose2 PCV7) than in the infant group (one month post-dose1 PCV7). PPV induced significantly higher VT antibody responses in PCV7-primed than unprimed infants, with neonatal and infant groups equivalent. High VT and non-VT antibody concentrations generally persisted to age 18 months. Conclusions: PCV7 is well-tolerated and immunogenic in PNG neonates and young infants and induces immunologic memory to PPV booster at age 9 months with antibody levels maintained to age 18 months
Safety and immunogenicity of pneumococcal conjugate vaccines in a high-risk population : A randomized controlled trial of 10-valent and 13-valent pneumococcal conjugate vaccine in Papua New Guinean infants
Background. There are little data on the immunogenicity of PCV10 and PCV13 in the same high-risk population. Methods. PCV10 and PCV13 were studied head-to-head in a randomized controlled trial in Papua New Guinea in which 262 infants received 3 doses of PCV10 or PCV13 at 1, 2, and 3 months of age. Serotype-specific immunoglobulin G (IgG) concentrations, and pneumococcal and nontypeable Haemophilus influenzae (NTHi) carriage were assessed prevaccination and at 4 and 9 months of age. Infants were followed up for safety until 9 months of age. Results. One month after the third dose of PCV10 or PCV13, 80% of infants had IgG concentrations ≥0.35µg/mL for vaccine serotypes, and 6 months postvaccination IgG concentrations ≥0.35 µg/mL were maintained for 8/10 shared PCV serotypes in > 75% of children vaccinated with either PCV10 or PCV13. Children carried a total of 65 different pneumococcal serotypes (plus nonserotypeable). At 4 months of age, 92% (95% confidence interval [CI] 85–96) of children vaccinated with PCV10 and 81% (95% CI 72–88) vaccinated with PCV13 were pneumococcal carriers (P = .023), whereas no differences were seen at 9 months of age, or for NTHi carriage. Both vaccines were well tolerated and not associated with serious adverse events. Conclusions. Infant vaccination with 3 doses of PCV10 or PCV13 is safe and immunogenic in a highly endemic setting; however, to significantly reduce pneumococcal disease in these settings, PCVs with broader serotype coverage and potency to reduce pneumococcal carriage are needed. Clinical Trials Registration. NCT01619462
Preparing for Life: Plasma Proteome Changes and Immune System Development During the First Week of Human Life.
Neonates have heightened susceptibility to infections. The biological mechanisms are incompletely understood but thought to be related to age-specific adaptations in immunity due to resource constraints during immune system development and growth. We present here an extended analysis of our proteomics study of peripheral blood-plasma from a study of healthy full-term newborns delivered vaginally, collected at the day of birth and on day of life (DOL) 1, 3, or 7, to cover the first week of life. The plasma proteome was characterized by LC-MS using our established 96-well plate format plasma proteomics platform. We found increasing acute phase proteins and a reduction of respective inhibitors on DOL1. Focusing on the complement system, we found increased plasma concentrations of all major components of the classical complement pathway and the membrane attack complex (MAC) from birth onward, except C7 which seems to have near adult levels at birth. In contrast, components of the lectin and alternative complement pathways mainly decreased. A comparison to whole blood messenger RNA (mRNA) levels enabled characterization of mRNA and protein levels in parallel, and for 23 of the 30 monitored complement proteins, the whole blood transcript information by itself was not reflective of the plasma protein levels or dynamics during the first week of life. Analysis of immunoglobulin (Ig) mRNA and protein levels revealed that IgM levels and synthesis increased, while the plasma concentrations of maternally transferred IgG1-4 decreased in accordance with their in vivo half-lives. The neonatal plasma ratio of IgG1 to IgG2-4 was increased compared to adult values, demonstrating a highly efficient IgG1 transplacental transfer process. Partial compensation for maternal IgG degradation was achieved by endogenous synthesis of the IgG1 subtype which increased with DOL. The findings were validated in a geographically distinct cohort, demonstrating a consistent developmental trajectory of the newborn's immune system over the first week of human life across continents. Our findings indicate that the classical complement pathway is central for newborn immunity and our approach to characterize the plasma proteome in parallel with the transcriptome will provide crucial insight in immune ontogeny and inform new approaches to prevent and treat diseases
Epidemiology of Concomitant Infection Due to Loa loa and Mansonella perstans in Gabon
Loa loa and Mansonella perstans are blood filarial parasites, endemic in the central and western African forest block, and transmitted by chrysops and culicoides flies, respectively. Loa loa is pathogenic and represents a major obstacle to the control of co-endemic filariae. Treatment of individuals with >8000 Loa loa microfilariae/ml can result in severe adverse reactions. M. perstans is prevalent in the tropics, with undefined clinical symptoms. We screened 4392 individuals for these infections in 212 Gabonese villages. The overall prevalence rates were 22.4% for Loa loa microfilariae, 10.2% for M. perstans, and 3.2% for mixed infection. These rates varied across the different ecosystems: forest, savannah, Lakeland, river (Ogouée), and equator. A correlation was found between the prevalence and intensity of microfilariae, while a negative relationship was found between clinical symptoms (pruritis, Calabar swelling) and the prevalence of Loa loa microfilaremia. This study confirms the spatial uniformity of the relationship between parasitological indices, and provides a map and baseline data for implementation of mass chemotherapy for these infections
Selection for Genetic Variation Inducing Pro-Inflammatory Responses under Adverse Environmental Conditions in a Ghanaian Population
BACKGROUND:Chronic inflammation is involved in the pathogenesis of chronic age-associated, degenerative diseases. Pro-inflammatory host responses that are deleterious later in life may originate from evolutionary selection for genetic variation mediating resistance to infectious diseases under adverse environmental conditions. METHODOLOGY/PRINCIPAL FINDINGS:In the Upper-East region of Ghana where infection has remained the leading cause of death, we studied the effect on survival of genetic variations at the IL10 gene locus that have been associated with chronic diseases. Here we show that an IL10 haplotype that associated with a pro-inflammatory innate immune response, characterised by low IL-10 (p = 0.028) and high TNF-alpha levels (p = 1.39 x 10(-3)), was enriched among Ghanaian elders (p = 2.46 x 10(-6)). Furthermore, in an environment where the source of drinking water (wells/rivers vs. boreholes) influences mortality risks (HR 1.28, 95% CI [1.09-1.50]), we observed that carriers of the pro-inflammatory haplotype have a survival advantage when drinking from wells/rivers but a disadvantage when drinking from boreholes (p(interaction) = 0.013). Resequencing the IL10 gene region did not uncover any additional common variants in the pro-inflammatory haplotype to those SNPs that were initially genotyped. CONCLUSIONS/SIGNIFICANCE:Altogether, these data lend strong arguments for the selection of pro-inflammatory host responses to overcome fatal infection and promote survival in adverse environments
Evolutionary concepts in predicting and evaluating the impact of mass chemotherapy schistosomiasis control programmes on parasites and their hosts
Schistosomiasis is a parasitic disease of significant medical and veterinary importance in many regions of the world. Recent shifts in global health policy have led towards the implementation of mass chemotherapeutic control programmes at the national scale in previously ‘neglected’ countries such as those within sub-Saharan Africa. Evolutionary theory has an important role to play in the design, application and interpretation of such programmes. Whilst celebrating the rapid success achieved to date by such programmes, in terms of reduced infection prevalence, intensity and associated human morbidity, evolutionary change in response to drug selection pressure may be predicted under certain circumstances, particularly in terms of the development of potential drug resistance, evolutionary changes in parasite virulence, transmission and host use, and/or competitive interactions with co-infecting pathogens. Theoretical and empirical data gained to date serve to highlight the importance of careful monitoring and evaluation of parasites and their hosts whenever and wherever chemotherapy is applied and where parasite transmission remains
Corrigendum: Clinical Protocol for a Longitudinal Cohort Study Employing Systems Biology to Identify Markers of Vaccine Immunogenicity in Newborn Infants in The Gambia and Papua New Guinea.
[This corrects the article DOI: 10.3389/fped.2020.00197.]