98 research outputs found

    The efficacy of oral corticoids in treating complex regional pain syndrome:A retrospective cohort study

    Get PDF
    Objectives: There is growing evidence supporting the role of inflammatory mechanisms in complex regional pain syndrome (CRPS). Corticoids, as most effective anti-inflammatory drugs, are widely used in treating inflammation. The aim of this study was to retrospectively assess the efficacy of oral corticoid treatment in CRPS patients. Methods: Patients treated at the center of pain medicine in the Erasmus University Medical Centre between January 2015 and January 2020 were approached to partake in this study. Medical records were screened for age, gender, medical history, duration of CRPS, and CRPS severity score. Also, treatment effect, dose and duration, pain scores (NRS), and side effects were extracted from medical records. In addition, global perceived effect was completed in patients treated with corticoids. Results: Between January 2015 and January 2020, twenty-nine CRPS patients received corticoids and met the inclusion criteria. One extreme outlier was excluded and treatment effect was unknown for one patient. Average daily dose was 28.9 mg (range 10–30 mg) and the mean treatment duration was 10.5 days (7–21 days). Fourteen patients (51.9%) responded positively to treatment and thirteen (48.1%) did not respond. Side effects were reported in five patients (17.9%). Conclusions: Corticoid treatment was effective in more than half of the patients. With only mild side effects reported the treatment also appears to be relatively safe. Further research is needed to investigate the efficacy of corticoids in treating (early) CRPS, preferably in an intervention study.</p

    Increase in Il-31 Serum Levels Is Associated with Reduced Structural Damage in Early Axial Spondyloarthritis

    Get PDF
    In spondyloarthritis, little is known about the relation between circulating cytokines and patient phenotype. We have quantified serum levels of T helper type 1 cell (Th1), Th2 and Th17 cytokines in patients with recent-onset axial spondyloarthritis (AxSpA) from the DESIR cohort, a prospective, multicenter French cohort consisting of 708 patients with recent-onset inflammatory back pain (duration >3 months but <3 years) suggestive of AxSpA. Serum levels of Th1, Th2, and Th17 cytokines were assessed at baseline in patients from the DESIR cohort fulfilling the ASAS criteria (ASAS+) and were compared with age- and sex-matched healthy controls. At baseline, ASAS+ patients (n = 443) and healthy controls (n = 79) did not differ in levels of most of the Th1, Th2 and Th17 cytokines except for IL-31, and sCD40L, which were significantly higher for ASAS+ patients than controls (p < 0.001 and p = 0.012, respectively). On multivariable analysis of ASAS+ patients, IL-31 level was associated with sCD40L level (p < 0.0001), modified Stoke AS Spine Score (mSASSS) < 1 (p = 0.035). The multivariable analyses showed that IL-31 was an independent factor associated with mSASSS < 1 (p = 0.001) and low bone mineral density (p = 0.01). Increased level of IL-31 might protect against structural damage but is also related to low BMD

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Architecture and performance of the KM3NeT front-end firmware

    Get PDF
    The KM3NeT infrastructure consists of two deep-sea neutrino telescopes being deployed in the Mediterranean Sea. The telescopes will detect extraterrestrial and atmospheric neutrinos by means of the incident photons induced by the passage of relativistic charged particles through the seawater as a consequence of a neutrino interaction. The telescopes are configured in a three-dimensional grid of digital optical modules, each hosting 31 photomultipliers. The photomultiplier signals produced by the incident Cherenkov photons are converted into digital information consisting of the integrated pulse duration and the time at which it surpasses a chosen threshold. The digitization is done by means of time to digital converters (TDCs) embedded in the field programmable gate array of the central logic board. Subsequently, a state machine formats the acquired data for its transmission to shore. We present the architecture and performance of the front-end firmware consisting of the TDCs and the state machine

    Event reconstruction for KM3NeT/ORCA using convolutional neural networks

    Get PDF
    The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches

    Event reconstruction for KM3NeT/ORCA using convolutional neural networks

    Get PDF
    The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino de tector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower-or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches
    corecore