71 research outputs found

    The role of dopamine Dâ‚‚ receptor mechanisms in the development of MDMA sensitisation

    No full text
    Rationale. ±3, 4-methelynedioxymethamphetamine (MDMA) is the primary psychoactive ingredient of the increasingly popular recreational street drug, ecstasy. As with other drugs of abuse, repeated intermitted exposure to MDMA can lead to an increase in the subsequent behavioural effects of the drug. This phenomenon, termed behavioural sensitisation, has been attributed to sensitisation of central DAergic mechanisms considered to underlie several aspects of addiction. Objectives. The purpose of the present research was to investigate the role of DA D₂ receptor mechanisms in the development of MDMA sensitisation and the acquisition of MDMA self-administration in rats. Methods. Rats received daily i.p. injections of the selective D₂ antagonist, eticlopride (0.0, 0.05, 0.3 mg/kg), prior to injections of MDMA (0.0, 10.0 mg/kg) for five days. Two days following the final pre-treatment session, the locomotor activating effects of MDMA (5 mg/kg, i.p.) were determined. Another group of rats were surgically implanted with i.v. jugular catheters before undergoing the same pre-treatment regimen. Two days following the final pre-treatment session, these rats were subsequently tested for acquisition of MDMA self-administration. The locomotor activating effects of MDMA (5 mg/kg i.p.) were determined two days following the last self-administration session. Results. Pre-treatment with MDMA enhanced the locomotor activating effects of MDMA and facilitated the acquisition of MDMA self-administration, as evidenced by an increased likelihood to meet an acquisition criterion. Co-administration of eticlopride during pre-treatment completely blocked the development of sensitisation to MDMA-produced hyperactivity but failed to significantly attenuate the facilitation of MDMA self-administration. Interestingly, pre-treatment with eticlopride alone also facilitated the acquisition of self-administration. MDMA self-administration failed to alter MDMA-produced locomotor hyperactivity. Conclusions. These findings suggest that repeated activation of DA D₂ receptors is required for the development of sensitisation to MDMA-produced hyperactivity but not for the development of sensitisation to MDMA-produced reinforcement. D₂ receptor mechanisms evidently play some role, however, because repeated exposure to eticlopride also facilitated MDMA self-administration. It is suggested that both sensitised DAergic mechanisms and desensitised 5-HTergic mechanisms contribute to the acquisition of MDMA self-administration

    Graph-theoretic simplification of quantum circuits with the ZX-calculus

    Get PDF
    We present a completely new approach to quantum circuit optimisation, based on the ZX-calculus. We first interpret quantum circuits as ZX-diagrams, which provide a flexible, lower-level language for describing quantum computations graphically. Then, using the rules of the ZX-calculus, we give a simplification strategy for ZX-diagrams based on the two graph transformations of local complementation and pivoting and show that the resulting reduced diagram can be transformed back into a quantum circuit. While little is known about extracting circuits from arbitrary ZX-diagrams, we show that the underlying graph of our simplified ZX-diagram always has a graph-theoretic property called generalised flow, which in turn yields a deterministic circuit extraction procedure. For Clifford circuits, this extraction procedure yields a new normal form that is both asymptotically optimal in size and gives a new, smaller upper bound on gate depth for nearest-neighbour architectures. For Clifford+T and more general circuits, our technique enables us to to `see around' gates that obstruct the Clifford structure and produce smaller circuits than naïve `cut-and-resynthesise' methods

    Resonant excitation of plasma waves in a plasma channel

    Get PDF
    We demonstrate resonant excitation of a plasma wave by a train of short laser pulses guided in a preformed plasma channel, for parameters relevant to a plasma-modulated plasma accelerator (P-MoPA). We show experimentally that a train of N≈10 short pulses, of total energy ∼1J, can be guided through 110mm long plasma channels with on-axis densities in the range 1017-1018cm-3. The spectrum of the transmitted train is found to be strongly red shifted when the plasma period is tuned to the intratrain pulse spacing. Numerical simulations are found to be in excellent agreement with the measurements and indicate that the resonantly excited plasma waves have an amplitude in the range 3-10GVm-1, corresponding to an accelerator stage energy gain of order 1GeV

    Wnt expression is not correlated with β-catenin dysregulation in Dupuytren's Disease

    Get PDF
    BACKGROUND: Dupuytren's contracture or disease (DD) is a fibro-proliferative disease of the hand that results in finger flexion contractures. Increased cellular β-catenin levels have been identified as characteristic of this disease. As Wnts are the most widely recognized upstream regulators of cellular β-catenin accumulation, we have examined Wnt gene expression in surgical specimens and in DD-derived primary cell cultures grown in two-dimensional monolayer culture or in three-dimensional FPCL collagen lattice cultures. RESULTS: The Wnt expression profile of patient-matched DD and unaffected control palmar fascia tissue was determined by a variety of complimentary methods; Affymetrix Microarray analysis, specific Wnt and degenerative primer-based Reverse Transcriptase (RT)-PCR, and Real Time PCR. Microarray analysis identified 13 Wnts associated with DD and control tissues. Degenerate Wnt RT-PCR analysis identified Wnts 10b and 11, and to a lesser extent 5a and 9a, as the major Wnt family members expressed in our patient samples. Competitive RT-PCR analysis identified significant differences between the levels of expression of Wnts 9a, 10b and 11 in tissue samples and in primary cell cultures grown as monolayer or in FPCL, where the mRNA levels in tissue > FPCL cultures > monolayer cultures. Real Time PCR data confirmed the down-regulation of Wnt 11 mRNA in DD while Wnt 10b, the most frequently isolated Wnt in DD and control palmar fascia, displayed widely variable expression between the methods of analysis. CONCLUSION: These data indicate that changes in Wnt expression per se are unlikely to be the cause of the observed dysregulation of β-catenin expression in DD

    Chronic kidney disease after liver, cardiac, lung, heart–lung, and hematopoietic stem cell transplant

    Get PDF
    Patient survival after cardiac, liver, and hematopoietic stem cell transplant (HSCT) is improving; however, this survival is limited by substantial pretransplant and treatment-related toxicities. A major cause of morbidity and mortality after transplant is chronic kidney disease (CKD). Although the majority of CKD after transplant is attributed to the use of calcineurin inhibitors, various other conditions such as thrombotic microangiopathy, nephrotic syndrome, and focal segmental glomerulosclerosis have been described. Though the immunosuppression used for each of the transplant types, cardiac, liver and HSCT is similar, the risk factors for developing CKD and the CKD severity described in patients after transplant vary. As the indications for transplant and the long-term survival improves for these children, so will the burden of CKD. Nephrologists should be involved early in the pretransplant workup of these patients. Transplant physicians and nephrologists will need to work together to identify those patients at risk of developing CKD early to prevent its development and progression to end-stage renal disease

    International longitudinal registry of patients with atrial fibrillation and treated with rivaroxaban: RIVaroxaban Evaluation in Real life setting (RIVER)

    Get PDF
    Background Real-world data on non-vitamin K oral anticoagulants (NOACs) are essential in determining whether evidence from randomised controlled clinical trials translate into meaningful clinical benefits for patients in everyday practice. RIVER (RIVaroxaban Evaluation in Real life setting) is an ongoing international, prospective registry of patients with newly diagnosed non-valvular atrial fibrillation (NVAF) and at least one investigator-determined risk factor for stroke who received rivaroxaban as an initial treatment for the prevention of thromboembolic stroke. The aim of this paper is to describe the design of the RIVER registry and baseline characteristics of patients with newly diagnosed NVAF who received rivaroxaban as an initial treatment. Methods and results Between January 2014 and June 2017, RIVER investigators recruited 5072 patients at 309 centres in 17 countries. The aim was to enroll consecutive patients at sites where rivaroxaban was already routinely prescribed for stroke prevention. Each patient is being followed up prospectively for a minimum of 2-years. The registry will capture data on the rate and nature of all thromboembolic events (stroke / systemic embolism), bleeding complications, all-cause mortality and other major cardiovascular events as they occur. Data quality is assured through a combination of remote electronic monitoring and onsite monitoring (including source data verification in 10% of cases). Patients were mostly enrolled by cardiologists (n = 3776, 74.6%), by internal medicine specialists 14.2% (n = 718) and by primary care/general practice physicians 8.2% (n = 417). The mean (SD) age of the population was 69.5 (11.0) years, 44.3% were women. Mean (SD) CHADS2 score was 1.9 (1.2) and CHA2DS2-VASc scores was 3.2 (1.6). Almost all patients (98.5%) were prescribed with once daily dose of rivaroxaban, most commonly 20 mg (76.5%) and 15 mg (20.0%) as their initial treatment; 17.9% of patients received concomitant antiplatelet therapy. Most patients enrolled in RIVER met the recommended threshold for AC therapy (86.6% for 2012 ESC Guidelines, and 79.8% of patients according to 2016 ESC Guidelines). Conclusions The RIVER prospective registry will expand our knowledge of how rivaroxaban is prescribed in everyday practice and whether evidence from clinical trials can be translated to the broader cross-section of patients in the real world

    Effect of repeated MDMA exposure on rat brain and behaviour

    No full text
    Rationale. ±3,4-Methylenedioxymethamphetamine (MDMA; ‘ecstasy’) is a popular recreational drug of abuse. Like other drugs of abuse, a proportion of users develop symptoms that are characteristic of a Substance Use Disorder (SUD). The behavioural and neurobiological consequences of repeated misuse of MDMA are not well understood, however.  Objectives. The purpose of the present thesis was to investigate behaviourally relevant neuroadaptations that develop with repeated MDMA exposure in laboratory rats.  Methods. First, the effect of chronic, long-access (6 hour) self-administration of MDMA on the accumulation of the transcription factor, ΔFosB, in the nucleus accumbens (core, shell), dorsal striatum (dorsomedial, dorsolateral, ventromedial, ventrolateral), prefrontal cortex (anterior cingulate, prelimbic, infralimbic, orbitofrontal), amygdala (central, basolateral), ventral tegmental area (anterior, posterior), and raphe (dorsal, median) was measured using immunohistochemistry. Second, the behavioural relevance of these findings was determined by examining the effect of bi-lateral intra-striatal (nucleus accumbens, dorsomedial striatum, dorsolateral striatum) microinjections of MDMA (200 μg/1 μL/side) on the expression of behavioural sensitisation following two days of withdrawal from a regimen of repeated, systemic MDMA exposure (10 mg/kg/day, i.p., for 5 days). Third, a procedure was developed to examine neurochemical correlates of sensitised MDMA-produced behaviour (0, 5, 10 mg/kg, i.p.) following the same regimen of repeated MDMA exposure. Samples were collected from the medial striatum using in vivo microdialysis and the extracellular concentrations of serotonin, dopamine, MDMA, and their metabolites were quantified using liquid chromatography coupled with quadrupole time-of-flight (Q-TOF) mass spectrometry. Lastly, a unique untargeted metabolomics procedure was developed to further analyse these microdialysis samples and to identify novel or unexpected metabolites that were relevant to the sensitised behavioural response produced by MDMA.  Results. MDMA self-administration produced region-dependant increases in ΔFosB. Significant increases in ΔFosB were observed in the nucleus accumbens core, the medial areas of the dorsal striatum, as well as all areas of the prefrontal cortex and amygdala. Small, but significant increases were also observed in the dorsal raphe. Increases were observed in the nucleus accumbens shell and the posterior tail of the ventral tegmental area, but these increases were not significant following statistical correction for multiple comparisons. Acute exposure to MDMA increased locomotor activity only when the drug was infused into the nucleus accumbens. Following repeated systemic exposure, behavioural sensitisation was expressed when MDMA was infused into both the nucleus accumbens or the dorsomedial striatum, but not the dorsolateral striatum. Analysis of microdialysates from the medial striatum indicated that behavioural sensitisation was accompanied by small increases in baseline levels of extracellular serotonin and decreased MDMA-produced increases in serotonin, but these changes were not statistically significant. Behavioural sensitisation was also accompanied by increased extracellular concentrations of dopamine at baseline and following acute MDMA exposure, but these data were not statistically analysed due to small sample sizes. MDMA-produced extracellular concentrations of MDMA did not change with repeated exposure. Untargeted metabolomics revealed potential changes in MDMA and dopamine metabolism that might be relevant to the sensitised behavioural response.  Conclusions. The findings of the current research suggest that repeated MDMA exposure results in many of the same neuroadaptations that result from repeated exposure to other drugs of abuse. These included increased ΔFosB expression in many brain regions that are relevant to addiction, such as the nucleus accumbens, dorsal striatum, and prefrontal cortex. Dopaminergic mechanisms also appeared to be influenced and were associated with sensitised MDMA-produced behaviour. Surprisingly, serotonergic mechanisms were not significantly impacted by repeated MDMA exposure under the current conditions. Some of the procedures developed in this thesis are unique and may be of value for future research investigating the neurochemical underpinnings of addictive behaviour or other disease states.</p
    • …
    corecore