369 research outputs found

    Transport spin polarization of Ni_xFe_{1-x}: electronic kinematics and band structure

    Get PDF
    We present measurements of the transport spin polarization of Ni_xFe_{1-x} (0<x<1) using the recently-developed Point Contact Andreev Reflection technique, and compare them with our first principles calculations of the spin polarization for this system. Surpisingly, the measured spin polarization is almost composition-independent. The results clearly demonstrate that the sign of the transport spin polarization does not coincide with that of the difference of the densities of states at the Fermi level. Calculations indicate that the independence of the spin polarization of the composition is due to compensation of density of states and Fermi velocity in the s- and d- bands

    The Role of Dectin-2 for Host Defense Against Disseminated Candidiasis

    Get PDF
    Acknowledgments This work was supported by European Union ALLFUN (FP7/2007 2013, HEALTH-2010-260338) (Fungi in the setting of inflammation, allergy and autoimmune diseases: Translating basic science into clinical practices ‘‘ALLFUN’’) to D.C.I., F.C., C.F., M.G.N., and N.A.R.G. M.G.N and J.Q. were supported by a Vici grant of The Netherlands Organization of Scientific Research (to M.G.N.). M.G.N. was supported by an ERC Consolidator Grant (nr. 310372). N.A.R.G. was also supported by the Wellcome Trust (086827, 075470, 097377, & 101873).Peer reviewedPublisher PD

    Surgical and Hardware-Related Adverse Events of Deep Brain Stimulation:A Ten-Year Single-Center Experience

    Get PDF
    INTRODUCTION: Although deep brain stimulation (DBS) is effective for treating a number of neurological and psychiatric indications, surgical and hardware-related adverse events (AEs) can occur that affect quality of life. This study aimed to give an overview of the nature and frequency of those AEs in our center and to describe the way they were managed. Furthermore, an attempt was made at identifying possible risk factors for AEs to inform possible future preventive measures. MATERIALS AND METHODS: Patients undergoing DBS-related procedures between January 2011 and July 2020 were retrospectively analyzed to inventory AEs. The mean follow-up time was 43 ± 31 months. Univariate logistic regression analysis was used to assess the predictive value of selected demographic and clinical variables. RESULTS: From January 2011 to July 2020, 508 DBS-related procedures were performed including 201 implantations of brain electrodes in 200 patients and 307 implantable pulse generator (IPG) replacements in 142 patients. Surgical or hardware-related AEs following initial implantation affected 40 of 200 patients (20%) and resolved without permanent sequelae in all instances. The most frequent AEs were surgical site infections (SSIs) (9.95%, 20/201) and wire tethering (2.49%, 5/201), followed by hardware failure (1.99%, 4/201), skin erosion (1.0%, 2/201), pain (0.5%, 1/201), lead migration (0.52%, 2/386 electrode sites), and hematoma (0.52%, 2/386 electrode sites). The overall rate of AEs for IPG replacement was 5.6% (17/305). No surgical, ie, staged or nonstaged, electrode fixation, or patient-related risk factors were identified for SSI or wire tethering. CONCLUSIONS: Major AEs including intracranial surgery-related AEs or AEs requiring surgical removal or revision of hardware are rare. In particular, aggressive treatment is required in SSIs involving multiple sites or when Staphylococcus aureus is identified. For future benchmarking, the development of a uniform reporting system for surgical and hardware-related AEs in DBS surgery would be useful

    Effect of transport-induced charge inhomogeneity on point-contact Andreev reflection spectra at ferromagnet-superconductor interfaces

    Full text link
    We investigate the transport properties of a ferromagnet-superconductor interface within the framework of a modified three-dimensional Blonder-Tinkham-Klapwijk formalism. In particular, we propose that charge inhomogeneity forms via two unique transport mechanisms, namely, evanescent Andreev reflection and evanescent quasiparticle transmission. Furthermore, we take into account the influence of charge inhomogeneity on the interfacial barrier potential and calculate the conductance as a function of bias voltage. Point-contact Andreev reflection (PCAR) spectra often show dip structures, large zero-bias conductance enhancement, and additional zero-bias conductance peak. Our results indicate that transport-induced charge inhomogeneity could be a source of all these anomalous characteristics of the PCAR spectra.Comment: 9 pages, 6 figure
    corecore