48 research outputs found

    IL-4 and IL-13 exposure during mucociliary differentiation of bronchial epithelial cells increases antimicrobial activity and expression of antimicrobial peptides

    Get PDF
    The airway epithelium forms a barrier against infection but also produces antimicrobial peptides (AMPs) and other inflammatory mediators to activate the immune system. It has been shown that in allergic disorders, Th2 cytokines may hamper the antimicrobial activity of the epithelium. However, the presence of Th2 cytokines also affects the composition of the epithelial layer which may alter its function. Therefore, we investigated whether exposure of human primary bronchial epithelial cells (PBEC) to Th2 cytokines during mucociliary differentiation affects expression of the human cathelicidin antimicrobial protein (hCAP18)/LL-37 and human beta defensins (hBD), and antimicrobial activity

    Reversible gene knockdown in mice using a tight, inducible shRNA expression system

    Get PDF
    RNA interference through expression of short hairpin (sh)RNAs provides an efficient approach for gene function analysis in mouse genetics. Techniques allowing to control time and degree of gene silencing in vivo, however, are still lacking. Here we provide a generally applicable system for the temporal control of ubiquitous shRNA expression in mice. Depending on the dose of the inductor doxycycline, the knockdown efficiency reaches up to 90%. To demonstrate the feasibility of our tool, a mouse model of reversible insulin resistance was generated by expression of an insulin receptor (Insr)-specific shRNA. Upon induction, mice develop severe hyperglycemia within seven days. The onset and progression of the disease correlates with the concentration of doxycycline, and the phenotype returns to baseline shortly after withdrawal of the inductor. On a broad basis, this approach will enable new insights into gene function and molecular disease mechanisms

    Guideline for Antibacterial Prophylaxis Administration in Pediatric Cancer and Hematopoietic Stem Cell Transplantation

    Get PDF
    INTRODUCTION: Bacteremia and other invasive bacterial infections are common among children with cancer receiving intensive chemotherapy and in pediatric recipients of hematopoietic stem cell transplantation (HSCT). Systemic antibacterial prophylaxis is one approach that can be used to reduce the risk of these infections. Our purpose was to develop a clinical practice guideline (CPG) for systemic antibacterial prophylaxis administration in pediatric cancer and HSCT patients. METHODS: An international and multi-disciplinary panel was convened with representation from pediatric hematology/oncology and HSCT, pediatric infectious diseases (including antibiotic stewardship), nursing, pharmacy, a patient advocate and a CPG methodologist. The panel used the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to generate recommendations based on the results of a systematic review of the literature. RESULTS: The systematic review identified 114 eligible randomized trials of antibiotic prophylaxis. The panel made a weak recommendation for systemic antibacterial prophylaxis for children receiving intensive chemotherapy for acute myeloid leukemia and relapsed acute lymphoblastic leukemia (ALL). Weak recommendations against the routine use of systemic antibacterial prophylaxis were made for children undergoing induction chemotherapy for ALL, autologous HSCT and allogeneic HSCT. A strong recommendation against its routine use was made for children whose therapy is not expected to result in prolonged severe neutropenia. If used, prophylaxis with levofloxacin was recommended during severe neutropenia. CONCLUSIONS: We present a CPG for systemic antibacterial prophylaxis administration in pediatric cancer and HSCT patients. Future research should evaluate the long-term effectiveness and adverse effects of prophylaxis

    Recovery of dialysis patients with COVID-19 : health outcomes 3 months after diagnosis in ERACODA

    Get PDF
    Background. Coronavirus disease 2019 (COVID-19)-related short-term mortality is high in dialysis patients, but longer-term outcomes are largely unknown. We therefore assessed patient recovery in a large cohort of dialysis patients 3 months after their COVID-19 diagnosis. Methods. We analyzed data on dialysis patients diagnosed with COVID-19 from 1 February 2020 to 31 March 2021 from the European Renal Association COVID-19 Database (ERACODA). The outcomes studied were patient survival, residence and functional and mental health status (estimated by their treating physician) 3 months after COVID-19 diagnosis. Complete follow-up data were available for 854 surviving patients. Patient characteristics associated with recovery were analyzed using logistic regression. Results. In 2449 hemodialysis patients (mean ± SD age 67.5 ± 14.4 years, 62% male), survival probabilities at 3 months after COVID-19 diagnosis were 90% for nonhospitalized patients (n = 1087), 73% for patients admitted to the hospital but not to an intensive care unit (ICU) (n = 1165) and 40% for those admitted to an ICU (n = 197). Patient survival hardly decreased between 28 days and 3 months after COVID-19 diagnosis. At 3 months, 87% functioned at their pre-existent functional and 94% at their pre-existent mental level. Only few of the surviving patients were still admitted to the hospital (0.8-6.3%) or a nursing home (∼5%). A higher age and frailty score at presentation and ICU admission were associated with worse functional outcome. Conclusions. Mortality between 28 days and 3 months after COVID-19 diagnosis was low and the majority of patients who survived COVID-19 recovered to their pre-existent functional and mental health level at 3 months after diagnosis

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Carbon isotopic evidence for rapid methane clathrate release recorded in coals at the terminus of the Late Palaeozoic Ice Age

    Get PDF
    The end of the Late Palaeozoic Ice Age (LPIA) ushered in a period of significant change in Earth's carbon cycle, demonstrated by the widespread occurrence of coals worldwide. In this study, we present stratigraphically constrained organic stable carbon isotope (δC) data for Early Permian coals (312 vitrain samples) from the Moatize Basin, Mozambique, which record the transition from global icehouse to greenhouse conditions. These coals exhibit a three-stage evolution in atmospheric δC from the Artinskian to the Kungurian. Early Kungurian coals effectively record the presence of the short-lived Kungurian Carbon Isotopic Excursion (KCIE), associated with the proposed rapid release of methane clathrates during deglaciation at the terminus of the Late Palaeozoic Ice Age (LPIA), with no observed disruption to peat-forming and terrestrial plant communities. δC variations in coals from the Moatize Basin are cyclic in nature on the order of 10-10 years and reflect changes in δC of ~±1‰ during periods of stable peat accumulation, supporting observations from Palaeozoic coals elsewhere. These cyclic variations express palaeoenvironmental factors constraining peat growth and deposition, associated with changes in base level. This study also demonstrates the effectiveness of vitrain in coal as a geochemical tool for recording global atmospheric change during the Late Palaeozoic

    PanVA: Variant Analysis within Pangenomes

    No full text
    Studying genetic variation underlying phenotypes is an important topic in genomics. In plant genomic research, for example, scientists analyze the variation between cultivars and wild types to develop crops with improved resistance to diseases. This analysis is commonly based on comparison to a single reference genome. Because the number of genomes is growing rapidly and to avoid bias towards a single reference genome, the field is shifting towards the use of pangenomes, i.e., abstract representations of multiple genomes in a species or population. While pangenomes allow for a more complete picture of the genetic variation, their large size and complex data structure hinder analysis. To deal with this, genome scientists need visual analytics tools that support interactive and exploratory analysis of pangenomes to identify relevant information for variant analysis. A major challenge is to handle multiple references together with providing the adequate context of heterogeneous (meta)data, such as annotations, evolutionary relationships, and phenotypes. To address this challenge, we developed PanVA, a visual analytics design for variant analysis in pangenomes. PanVA supports a novel strategy for pangenomic variant analysis that was designed with the active participation of genomics researchers. PanVA uniquely allows researchers to get a complete picture of the variation within genes in a large set of genomes, and identify associations with phenotypes. The design combines tailored visual representations with interactions such as sorting, grouping and aggregation, allowing the user to navigate and explore different perspectives. The realization of the PanVA design is possible through PanTools. Through user evaluation in the context of plants and pathogen research, we demonstrate that PanVA helps researchers explore regions of interest and generate hypotheses about genetic variants and their role in phenotypic variation.</p

    Migration of human hematopoietic progenitor cells across bone marrow endothelium is regulated by vascular endothelial cadherin

    No full text
    The success of stem cell transplantation depends on the ability of i.v. infused stem cells to engraft the bone marrow, a process referred to as homing. Efficient homing requires migration of CD34(+) cells across the bone marrow endothelium, most likely through the intercellular junctions. In this study, we show that loss of vascular endothelial (VE)-cadherin-mediated endothelial cell-cell adhesion increases the permeability of monolayers of human bone marrow endothelial cells (HBMECs) and stimulates the transendothelial migration of CD34(+) cells in response to stromal cell-derived factor-la. Stromal cell-derived factor-1alpha-induced migration was dependent on VCAM-1 and ICAM-1, even in the absence of VE-cadherin function. Cross-linking of ICAM-1 to mimic the leukocyte-endothelium interaction induced actin stress fiber formation but did not induce loss of endothelial integrity, whereas cross-linking of VCAM-1 increased the HBMEC permeability and induced gaps in the monolayer. In addition, VCAM-1-mediated gap formation in HBMEC was accompanied by and dependent on the production of reactive oxygen species. These data suggest that modulation of VE-cadherin function directly affects the efficiency of transendothelial migration of CD34(+) cells and that activation of ICAM-1 and, in particular, VCAM-1 plays an important role in this process through reorganization of the endothelial actin cytoskeleton and by modulating the integrity of the bone marrow endothelium through the production of reactive oxygen specie

    Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells

    No full text
    The integrity of the endothelium is dependent on cell-cell, adhesion, which is mediated by vascular-endothelial (VE)-cadherin. Proper VE-cadherin-mediated homotypic adhesion is, in turn, dependent on the connection between VE-cadherin and the cortical actin cytoskeleton. Rho-like small GTPases are key molecular switches that control cytoskeletal dynamics and cadherin function in epithelial as well as endothelial cells. We show here that a cell-penetrating, constitutively active form of Rac (Tat-RacV12) induces a rapid loss of VE-cadherin-mediated cell-cell adhesion in endothelial cells from primary human umbilical veins (pHUVEC). This effect is accompanied by the formation of actin stress fibers and is dependent on Rho activity. However, transduction of pHUVEC with Tat-RhoV14, which induces pronounced stress fiber and focal adhesion formation, did not result in a redistribution of VE-cadherin or an overall loss of cell-cell adhesion. In line with this observation, endothelial permeability was more efficiently increased by Tat-RacV12 than by Tat-RhoV14. The loss of cell-cell adhesion, which is induced by Tat-RacV12, occurred in parallel to and was dependent upon the intracellular production of reactive oxygen species (ROS). Moreover, Tat-RacV12 induced an increase in tyrosine phosphorylation of a component the VE-cadherin-catenin complex, which was identified as α-catenin. The functional relevance of this signaling pathway was further underscored by the observation that endothelial cell migration, which requires a transient reduction of cell-cell adhesion, was blocked when signaling through ROS was inhibited. In conclusion, Rac-mediated production of ROS represents a previously unrecognized means of regulating VE-cadherin function and may play an important role in the (patho)physiology associated with inflammation and endothelial damage as well as with endothelial cell migration and angiogenesis
    corecore