122 research outputs found

    Acute cigarette smoke exposure leads to higher viral infection in human bronchial epithelial cultures by altering interferon, glycolysis and GDF15-related pathways

    Get PDF
    Background Acute exacerbations of chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD), are frequently associated with rhinovirus (RV) infections. Despite these associations, the pathogenesis of virus-induced exacerbations is incompletely understood. We aimed to investigate effects of cigarette smoke (CS), a primary risk factor for COPD, on RV infection in airway epithelium and identify novel mechanisms related to these effects. Methods Primary bronchial epithelial cells (PBEC) from COPD patients and controls were differentiated by culture at the air-liquid interface (ALI) and exposed to CS and RV-A16. Bulk RNA sequencing was performed using samples collected at 6 and 24 h post infection (hpi), and viral load, mediator and l-lactate levels were measured at 6, 24 and 48hpi. To further delineate the effect of CS on RV-A16 infection, we performed growth differentiation factor 15 (GDF15) knockdown, l-lactate and interferon pre-treatment in ALI-PBEC. We performed deconvolution analysis to predict changes in the cell composition of ALI-PBEC after the various exposures. Finally, we compared transcriptional responses of ALI-PBEC to those in nasal epithelium after human RV-A16 challenge. Results CS exposure impaired antiviral responses at 6hpi and increased viral replication at 24 and 48hpi in ALI-PBEC. At 24hpi, CS exposure enhanced expression of RV-A16-induced epithelial interferons, inflammation-related genes and CXCL8. CS exposure increased expression of oxidative stress-related genes, of GDF15, and decreased mitochondrial membrane potential. GDF15 knockdown experiments suggested involvement of this pathway in the CS-induced increase in viral replication. Expression of glycolysis-related genes and l-lactate production were increased by CS exposure, and was demonstrated to contribute to higher viral replication. No major differences were demonstrated between COPD and non-COPD-derived cultures. However, cellular deconvolution analysis predicted higher secretory cells in COPD-derived cultures at baseline. Conclusion Altogether, our findings demonstrate that CS exposure leads to higher viral infection in human bronchial epithelium by altering not only interferon responses, but likely also through a switch to glycolysis, and via GDF15related pathways.Pathogenesis and treatment of chronic pulmonary disease

    A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress

    Get PDF
    Endoplasmic reticulum (ER) stress is increasingly recognized as an important mechanism in a wide range of diseases including cystic fibrosis, alpha-1 antitrypsin deficiency, Parkinson's and Alzheimer's disease. Therefore, there is an increased need for reliable and quantitative markers for detection of ER stress in human tissues and cells. Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum can cause ER stress, which leads to the activation of the unfolded protein response (UPR). UPR signaling involves splicing of X-box binding protein-1 (XBP1) mRNA, which is frequently used as a marker for ER stress. In most studies, the splicing of the XBP1 mRNA is visualized by gel electrophoresis which is laborious and difficult to quantify. In the present study, we have developed and validated a quantitative real-time RT-PCR method to detect the spliced form of XBP1 mRNA

    Modulation of airway epithelial innate immunity and wound repair by M(GM-CSF) and M(M-CSF) macrophages

    Get PDF
    Airway epithelial cells and macrophages participate in inflammatory responses to external noxious stimuli, which can cause epithelial injury. Upon injury, epithelial cells and macrophages act in concert to ensure rapid restoration of epithelial integrity. The nature of the interactions between these cell types during epithelial repair is incompletely understood. We used an in vitro human coculture model of primary bronchial epithelial cells cultured at the air-liquid interface (ALI-PBEC) and polarized primary monocyte-derived macrophages. Using this coculture, we studied the contribution of macrophages to epithelial innate immunity, wound healing capacity, and epithelial exposure to whole cigarette smoke (WCS). Coculture of ALI-PBEC with lipopolysaccharide (LPS)-activated M(GM-CSF) macrophages increased the expression ofDEFB4A,CXCL8, andIL6at 24 h in the ALI-PBEC, whereas LPS-activated M(M-CSF) macrophages only increased epithelialIL6expression. Furthermore, wound repair was accelerated by coculture with both activated M(GM-CSF) and M(M-CSF) macrophages, also following WCS exposure. Coculture of ALI-PBEC and M(GM-CSF) macrophages resulted in increasedCAMPexpression in M(GM-CSF) macrophages, which was absent in M(M-CSF) macrophages.CAMPencodes LL-37, an antimicrobial peptide with immune-modulating and repair-enhancing activities. In conclusion, dynamic crosstalk between ALI-PBEC and macrophages enhances epithelial innate immunity and wound repair, even upon concomitant cigarette smoke exposure.Pathogenesis and treatment of chronic pulmonary disease

    Modulation of Airway Epithelial Innate Immunity and Wound Repair by M(GM-CSF) and M(M-CSF) Macrophages

    Get PDF
    Airway epithelial cells and macrophages participate in inflammatory responses to external noxious stimuli, which can cause epithelial injury. Upon injury, epithelial cells and macrophages act in concert to ensure rapid restoration of epithelial integrity. The nature of the interactions between these cell types during epithelial repair is incompletely understood. We used an in vitro human coculture model of primary bronchial epithelial cells cultured at the air-liquid interface (ALI-PBEC) and polarized primary monocyte-derived macrophages. Using this coculture, we studied the contribution of macrophages to epithelial innate immunity, wound healing capacity, and epithelial exposure to whole cigarette smok

    Increased ERK signalling promotes inflammatory signalling in primary airway epithelial cells expressing Z α1-antitrypsin.

    Get PDF
    Overexpression of Z α1-antitrypsin is known to induce polymer formation, prime the cells for endoplasmic reticulum stress and initiate nuclear factor kappa B (NF-κB) signalling. However, whether endogenous expression in primary bronchial epithelial cells has similar consequences remains unclear. Moreover, the mechanism of NF-κB activation has not yet been elucidated. Here, we report excessive NF-κB signalling in resting primary bronchial epithelial cells from ZZ patients compared with wild-type (MM) controls, and this appears to be mediated by mitogen-activated protein/extracellular signal-regulated kinase, EGF receptor and ADAM17 activity. Moreover, we show that rather than being a response to protein polymers, NF-κB signalling in airway-derived cells represents a loss of anti-inflammatory signalling by M α1-antitrypsin. Treatment of ZZ primary bronchial epithelial cells with purified plasma M α1-antitrypsin attenuates this inflammatory response, opening up new therapeutic options to modulate airway inflammation in the lung

    Regulation of YKL-40 expression by corticosteroids:effect on pro-inflammatory macrophages in vitro and its modulation in COPD in vivo

    Get PDF
    Macrophages constitute a heterogeneous cell population with pro- (MΦ1) and anti-inflammatory (MΦ2) cells. The soluble chitinase-like-protein YKL-40 is expressed in macrophages and various other cell types, and has been linked to a variety of inflammatory diseases, including COPD. Dexamethasone strongly reduces YKL-40 expression in peripheral blood mononuclear cells (PBMC) in vitro. We hypothesized that: a) YKL-40 is differentially expressed by MΦ1 and MΦ2, b) is decreased by corticosteroids and c) that long-term treatment with inhaled corticosteroids (ICS) affects YKL-40 levels in serum and sputum of COPD patients. Monocytes of healthy subjects were cultured in vitro for 7 days with either GM-CSF or M-CSF (for MΦ1 and MΦ2, respectively) and stimulated for 24 h with LPS, TNFα, or oncostatin M (OSM). MΦ1 and MΦ2 differentiation was assessed by measuring secretion of IL-12p40 and IL-10, respectively. YKL-40 expression in macrophages was measured by quantitative RT-PCR (qPCR) and ELISA; serum and sputum YKL-40 levels were analyzed by ELISA. Pro-inflammatory MΦ1 cells secreted significantly more YKL-40 than MΦ2, which was independent of stimulation with LPS, TNFα or OSM (p < 0.001) and confirmed by qPCR. Dexamethasone dose-dependently and significantly inhibited YKL-40 protein and mRNA levels in MΦ1. Serum YKL-40 levels of COPD patients were significantly higher than sputum YKL-40 levels but were not significantly changed by ICS treatment. YKL-40 secretion from MΦ1 cells is higher than from MΦ2 cells and is unaffected by further stimulation with pro-inflammatory agents. Furthermore, YKL-40 release from cultured monocyte-derived macrophages is inhibited by dexamethasone especially in MΦ1, but ICS treatment did not change YKL-40 serum and sputum levels in COPD. These results indicate that YKL-40 expression could be used as a marker for MΦ1 macrophages in vitro, but not for monitoring the effect of ICS in COPD. ClinicalTrials.gov, registration number: NCT0015884

    Smoking cessation and bronchial epithelial remodelling in COPD: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic Obstructive Pulmonary Disease (COPD) is associated with bronchial epithelial changes, including squamous cell metaplasia and goblet cell hyperplasia. These features are partially attributed to activation of the epidermal growth factor receptor (EGFR). Whereas smoking cessation reduces respiratory symptoms and lung function decline in COPD, inflammation persists. We determined epithelial proliferation and composition in bronchial biopsies from current and ex-smokers with COPD, and its relation to duration of smoking cessation.</p> <p>Methods</p> <p>114 COPD patients were studied cross-sectionally: 99 males/15 females, age 62 ± 8 years, median 42 pack-years, no corticosteroids, current (n = 72) or ex-smokers (n = 42, median cessation duration 3.5 years), postbronchodilator FEV<sub>1 </sub>63 ± 9% predicted. Squamous cell metaplasia (%), goblet cell (PAS/Alcian Blue<sup>+</sup>) area (%), proliferating (Ki-67<sup>+</sup>) cell numbers (/mm basement membrane), and EGFR expression (%) were measured in intact epithelium of bronchial biopsies.</p> <p>Results</p> <p>Ex-smokers with COPD had significantly less epithelial squamous cell metaplasia, proliferating cell numbers, and a trend towards reduced goblet cell area than current smokers with COPD (p = 0.025, p = 0.001, p = 0.081, respectively), but no significant difference in EGFR expression. Epithelial features were not different between short-term quitters (<3.5 years) and current smokers. Long-term quitters (≥3.5 years) had less goblet cell area than both current smokers and short-term quitters (medians: 7.9% vs. 14.4%, p = 0.005; 7.9% vs. 13.5%, p = 0.008; respectively), and less proliferating cell numbers than current smokers (2.8% vs. 18.6%, p < 0.001).</p> <p>Conclusion</p> <p>Ex-smokers with COPD had less bronchial epithelial remodelling than current smokers, which was only observed after long-term smoking cessation (>3.5 years).</p> <p>Trial registration</p> <p>NCT00158847</p
    corecore