14 research outputs found
Comparison of analog and digital preoperative planning in total hip and knee arthroplasties - A prospective study of 173 hips and 65 total knees
Introduction Digital correction of the magnification factor is expected to yield more accurate and reliable preoperative plans. We hypothesized that digital templating would be more accurate than manual templating for total hip and knee arthroplasties. Patients and methods Firstly, we established the interobserver and intraobserver reliability of the templating procedure. The accuracy and reliability of digital and analog plans were measured in a series of 238 interventions, which were all planned using both techniques. Results Interobserver reliability was good for the planning of knee arthroplasties (kappa-values 0.63-0.75), but not more than moderate for the planning of hip arthroplasties (kappa-values 0.22-0.54). Analog plans of knee arthroplasties systematically underestimated the component sizes (1.1 size on average), while the digital procedure proved to be accurate (0.1-0.4 size too small on average). The following figures show percentage of cases receiving a correct implant, allowing an error of one size. Digital templating of the hip arthroplasty was less frequently correct (cemented cup and stem: 72% and 79%; uncemented cup and stem: 52% and 66%) than analog planning (cemented cup and stem: 73% and 89%; uncemented cup and stem: 64% and 52%). Interpretation Planning of component sizes for total knee arthroplasties is an accurate procedure when performed digitally. Our digital preoperative plans which were performed by someone other than the surgeon were less accurate than the analog plans prepared by the surgeon
Effects of photo and thermo cycles on flowering time in barley: a genetical phenomics approach
The effects of synchronous photo (16 h daylength) and thermo (2 °C daily fluctuation) cycles on flowering time were compared with constant light and temperature treatments using two barley mapping populations derived from the facultative cultivar ‘Dicktoo’. The ‘Dicktoo’בMorex’ (spring) population (DM) segregates for functional differences in alleles of candidate genes for VRN-H1, VRN-H3, PPD-H1, and PPD-H2. The first two loci are associated with the vernalization response and the latter two with photoperiod sensitivity. The ‘Dicktoo’בKompolti korai’ (winter) population (DK) has a known functional polymorphism only at VRN-H2, a locus associated with vernalization sensitivity. Flowering time in both populations was accelerated when there was no fluctuating factor in the environment and was delayed to the greatest extent with the application of synchronous photo and thermo cycles. Alleles at VRN-H1, VRN-H2, PPD-H1, and PPD-H2—and their interactions—were found to be significant determinants of the increase/decrease in days to flower. Under synchronous photo and thermo cycles, plants with the Dicktoo (recessive) VRN-H1 allele flowered significantly later than those with the Kompolti korai (recessive) or Morex (dominant) VRN-H1 alleles. The Dicktoo VRN-H1 allele, together with the late-flowering allele at PPD-H1 and PPD-H2, led to the greatest delay. The application of synchronous photo and thermo cycles changed the epistatic interaction between VRN-H2 and VRN-H1: plants with Dicktoo type VRN-H1 flowered late, regardless of the allele phase at VRN-H2. Our results are novel in demonstrating the large effects of minor variations in environmental signals on flowering time: for example, a 2 °C thermo cycle caused a delay in flowering time of 70 d as compared to a constant temperature
Click detection in Italian and English
Contains fulltext :
6070.pdf (publisher's version ) (Open Access
The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly
To promote host colonization, many plant pathogens secrete effector proteins that either suppress or counteract host defences. However, when these effectors are recognized by the host's innate immune system, they trigger resistance rather than promoting virulence. Effectors are therefore key molecules in determining disease susceptibility or resistance. We show here that Avr2, secreted by the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici (Fol), shows both activities: it is required for full virulence in a susceptible host and also triggers resistance in tomato plants carrying the resistance gene I-2. Point mutations in AVR2, causing single amino acid changes, are associated with I-2-breakingFol strains. These point mutations prevent recognition by I-2, both in tomato and when both genes are co-expressed in leaves of Nicotiana benthamiana. Fol strains carrying the Avr2 variants are equally virulent, showing that virulence and avirulence functions can be uncoupled. Although Avr2 is secreted into the xylem sap when Fol colonizes tomato, the Avr2 protein can be recognized intracellularly by I-2, implying uptake by host cells
A framework for human spine imaging using a freehand 3D ultrasound system
The use of 3D ultrasound imaging to follow the progression of scoliosis, i.e., a 3D deformation of the spine, is described. Unlike other current examination modalities, in particular based on X-ray, its non-detrimental effect enables it to be used frequently to follow the progression of scoliosis which sometimes may develop rapidly. Furthermore, 3D ultrasound imaging provides information in 3D directly in contrast to projection methods. This paper describes a feasibility study of an ultrasound system to provide a 3D image of the human spine, and presents a framework of procedures to perform this task. The framework consist of an ultrasound image acquisition procedure to image a large part of the human spine by means of a freehand 3D ultrasound system and a volume reconstruction procedure which was performed in four stages: bin-filling, hole-filling, volume segment alignment, and volume segment compounding. The overall results of the procedures in this framework show that imaging of the human spine using ultrasound is feasible. Vertebral parts such as the transverse processes, laminae, superior articular processes, and spinous process of the vertebrae appear as clouds of voxels having intensities higher than the surrounding voxels. In sagittal slices, a string of transverse processes appears representing the curvature of the spine. In the bin-filling stage the estimated mean absolute noise level of a single measurement of a single voxel was determined. Our comparative study for the hole-filling methods based on rank sum statistics proved that the pixel nearest neighbour (PNN) method with variable radius and with the proposed olympic operation is the best method. Its mean absolute grey value error was less in magnitude than the noise level of a single measurement
Fast detection of nutrient limitation in macroalgae and seagrass with nutrient-induced fluorescence.
Fast detection of nutrient limitation in macroalgae and seagrass with nutrient-induced fluorescence.
Background Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess nutrient limitation are often cumbersome and time consuming. For phytoplankton, a rapid method has been described based on short-term changes in chlorophyll fluorescence upon nutrient addition, also known as Nutrient-Induced Fluorescence Transients (NIFTs). Thus far, though, the NIFT technique was not well suited for macroalgae and seagrasses. Methodology & Principal Findings We developed a new experimental setup so that the NIFT technique can be used to assess nutrient limitation of benthic macroalgae and seagrasses. We first tested the applicability of the technique on sea lettuce (Ulva lactuca) cultured in the laboratory on nutrient-enriched medium without either nitrogen or phosphorus. Addition of the limiting nutrient resulted in a characteristic change in the fluorescence signal, whereas addition of non-limiting nutrients did not yield a response. Next, we applied the NIFT technique to field samples of the encrusting fan-leaf alga Lobophora variegata, one of the key algal species often involved in the degradation of coral reef ecosystems. The results pointed at co-limitation of L. variegata by phosphorus and nitrogen, although it responded more strongly to phosphate than to nitrate and ammonium addition. For turtle grass (Thalassia testudinum) we found the opposite result, with a stronger NIFT response to nitrate and ammonium than to phosphate. Conclusions & Significance Our extension of the NIFT technique offers an easy and fast method (30-60 min per sample) to determine nutrient limitation of macroalgae and seagrasses. We successfully applied this technique to macroalgae on coral reef ecosystems and to seagrass in a tropical inner bay, and foresee wider application to other aquatic plants, and to other marine and freshwater ecosystems
Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume
OBJECTIVE: To evaluate performance of computer-aided detection (CAD) beyond double reading for pulmonary nodules on low-dose computed tomography (CT) by nodule volume. METHODS: A total of 400 low-dose chest CT examinations were randomly selected from the NELSON lung cancer screening trial. CTs were evaluated by two independent readers and processed by CAD. A total of 1,667 findings marked by readers and/or CAD were evaluated by a consensus panel of expert chest radiologists. Performance was evaluated by calculating sensitivity of pulmonary nodule detection and number of false positives, by nodule characteristics and volume. RESULTS: According to the screening protocol, 90.9 % of the findings could be excluded from further evaluation, 49.2 % being small nodules (less than 50 mm(3)). Excluding small nodules reduced false-positive detections by CAD from 3.7 to 1.9 per examination. Of 151 findings that needed further evaluation, 33 (21.9 %) were detected by CAD only, one of them being diagnosed as lung cancer the following year. The sensitivity of nodule detection was 78.1 % for double reading and 96.7 % for CAD. A total of 69.7 % of nodules undetected by readers were attached nodules of which 78.3 % were vessel-attached. CONCLUSIONS: CAD is valuable in lung cancer screening to improve sensitivity of pulmonary nodule detection beyond double reading, at a low false-positive rate when excluding small nodules. KEY POINTS: * Computer-aided detection (CAD) has known advantages for computed tomography (CT). * Combined CAD/nodule size cut-off parameters assist CT lung cancer screening. * This combination improves the sensitivity of pulmonary nodule detection by CT. * It increases the positive predictive value for cancer detection
Multi-dimensional computed cardiac visualization
During the past decade, coronary radiology has undergone rapid development. This second edition of the only available monograph on the subject places special emphasis on the role of non-invasive techniques, which can supply information on the condition of the coronary arteries within one simple and short examination. The modalities considered in detail include CT angiography with multidetector and dual-source tomography, 2D and 3D visualization techniques, and MR coronary angiography. Invasive procedures are not neglected, however, and a separate section includes chapters on conventional catheterization, quantitative angiography, and intravascular and quantitative ultrasound. In addition, a section devoted to coronary calcification clearly explains its development and the use of modern techniques in its visualization and quantification. The informative text is supported by a large number of high-quality color images of the coronary and cardiac anatomy