28 research outputs found

    Could wastewater analysis be a useful tool for China?: a review

    Get PDF
    Analysing wastewater samples is an innovative approach that overcomes many limitations of traditional surveys to identify and measure a range of chemicals that were consumed by or exposed to people living in a sewer catchment area. First conceptualised in 2001, much progress has been made to make wastewater analysis (WWA) a reliable and robust tool for measuring chemical consumption and/or exposure. At the moment, the most popular application of WWA, sometimes referred as sewage epidemiology, is to monitor the consumption of illicit drugs in communities around the globe, including China. The approach has been largely adopted by law enforcement agencies as a device to monitor the temporal and geographical patterns of drug consumption. In the future, the methodology can be extended to other chemicals including biomarkers of population health (e.g. environmental or oxidative stress biomarkers, lifestyle indicators or medications that are taken by different demographic groups) and pollutants that people are exposed to (e.g. polycyclic aromatic hydrocarbons, perfluorinated chemicals, and toxic pesticides). The extension of WWA to a huge range of chemicals may give rise to a field called sewage chemical-information mining (SCIM) with unexplored potentials. China has many densely populated cities with thousands of sewage treatment plants which are favourable for applying WWA/SCIM in order to help relevant authorities gather information about illicit drug consumption and population health status. However, there are some prerequisites and uncertainties of the methodology that should be addressed for SCIM to reach its full potential in China

    Liquid chromatography-quadrupole time-of-flight mass spectrometry for screening in vitro drug metabolites in humans: Investigation on seven phenethylamine-based designer drugs

    Get PDF
    Phenethylamine-based designer drugs are prevalent within the new psychoactive substance market. Characterisation of their metabolites is important in order to identify suitable biomarkers which can be used for better monitoring their consumption. Careful design of in vitro metabolism experiments using subcellular liver fractions will assist in obtaining reliable outcomes for such purposes. The objective of this study was to stepwise investigate the in vitro human metabolism of seven phenethylamine-based designer drugs using individual families of enzymes. This included para-methoxyamphetamine, para-methoxymethamphetamine, 4-methylthioamphetamine, N-methyl-benzodioxolylbutanamine, benzodioxolylbutanamine, 5-(2-aminopropyl) benzofuran and 6-(2-aminopropyl) benzofuran. Identification and structural elucidation of the metabolites was performed using liquid chromatography-quadrupole-time-of-flight mass spectrometry. The targeted drugs were mainly metabolised by cytochrome P450 enzymes via O-dealkylation as the major pathway, followed by N-dealkylation, oxidation of unsubstituted C atoms and deamination (to a small extent). These drugs were largely free from Phase II metabolism. Only a limited number of metabolites were found which was consistent with the existing literature for other phenethylamine-based drugs. Also, the metabolism of most of the targeted drugs progressed at slow rate. The reproducibility of the identified metabolites was assessed through examining formation patterns using different incubation times, substrate and enzyme concentrations. Completion of the work has led to a set of metabolites which are representative for specific detection of these drugs in intoxicated individuals and also for meaningful evaluation of their use in communities by wastewater-based drug epidemiology

    Estimation of caffeine intake from analysis of caffeine metabolites in wastewater

    Get PDF
    Caffeine metabolites in wastewater were investigated as potential biomarkers for assessing caffeine intake in a population. The main human urinary metabolites of caffeine were measured in the urban wastewater of ten European cities and the metabolic profiles in wastewater were compared with the human urinary excretion profile. A good match was found for 1,7-dimethyluric acid, an exclusive caffeine metabolite, suggesting that might be a suitable biomarker in wastewater for assessing population-level caffeine consumption. A correction factor was developed considering the percentage of excretion of this metabolite in humans, according to published pharmacokinetic studies. Daily caffeine intake estimated from wastewater analysis was compared with the average daily intake calculated from the average amount of coffee consumed by country per capita. Good agreement was found in some cities but further information is needed to standardize this approach. Wastewater analysis proved useful to providing additional local information on caffeine use

    Comparison of phosphodiesterase type V inhibitors use in eight European cities through analysis of urban wastewater

    Get PDF
    In this work a step forward in investigating the use of prescription drugs, namely erectile dysfunction products, at European level was taken by applying the wastewater-based epidemiology approach. 24-h composite samples of untreated wastewater were collected at the entrance of eight wastewater treatment plants serving the catchment within the cities of Bristol, Brussels, Castellón, Copenhagen, Milan, Oslo, Utrecht and Zurich. A validated analytical procedure with direct injection of filtered aliquots by liquid chromatography-tandem mass spectrometry was applied. The target list included the three active pharmaceutical ingredients (sildenafil, tadalafil and vardenafil) together with (bio)transformation products and other analogues. Only sildenafil and its two human urinary metabolites desmethyl- and desethylsildenafil were detected in the samples with concentrations reaching 60 ng L. The concentrations were transformed into normalized measured loads and the estimated actual consumption of sildenafil was back-calculated from these loads. In addition, national prescription data from five countries was gathered in the form of the number of prescribed daily doses and transformed into predicted loads for comparison. This comparison resulted in the evidence of a different spatial trend across Europe. In Utrecht and Brussels, prescription data could only partly explain the total amount found in wastewater; whereas in Bristol, the comparison was in agreement; and in Milan and Oslo a lower amount was found in wastewater than expected from the prescription data. This study illustrates the potential of wastewater-based epidemiology to investigate the use of counterfeit medication and rogue online pharmacy sales

    Novel Wastewater-Based Epidemiology Approach Based on Liquid Chromatography–Tandem Mass Spectrometry for Assessing Population Exposure to Tobacco-Specific Toxicants and Carcinogens

    No full text
    Tobacco smoking remains an important public health issue worldwide. Assessment of exposure to tobacco-related toxicants and carcinogens at the population level is thus an essential population health indicator. This can be achieved by wastewater-based epidemiology (WBE), which relies on the analysis of biomarkers in wastewater. However, required analytical methods for the simultaneous measurement of tobacco-related toxicants and carcinogens in wastewater are not available. In this study, a new analytical procedure was developed and validated to measure tobacco-related alkaloids, carcinogens, and their metabolites in raw wastewater, including anabasine (ANABA), anatabine (ANATA), cotinine (COT), trans-3′-hydroxycotinine (COT-OH), <i>N</i>-nitrosoanabasine (NAB), <i>N</i>-nitrosoanatabine (NAT), <i>N</i>-nitrosonornicotine (NNN), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), NNAL-<i>N</i>-β-glucuronide, and NNAL-<i>O</i>-β-glucuronide. Different parameters were optimized for the solid-phase extraction procedure and instrumental analysis using liquid chromatography–tandem mass spectrometry. The optimized method was fully validated, resulting in acceptable within-run and between-run precision (<8% and <10% relative standard deviation, respectively) and accuracy (<9% and <13% bias, respectively). Method quantification limits were at 0.5–120 ng/L in wastewater. Target analytes were stable in wastewater at 4 and 20 °C over 24 h. The developed method was applied to wastewater samples from two Belgian cities. Average concentrations of COT, COT-OH, ANATA, ANABA, and NAT were 5200, 2600, 30, 10, and 0.6 ng/L, respectively, while NAB, NNN, NNK, and NNAL were not detected in the samples. With the developed robust analytical method, our study provided the first insight into the population exposure to both toxicants and carcinogens resulting from tobacco use

    Factors influencing SARS-CoV-2 RNA concentrations in wastewater up to the sampling stage : a systematic review

    No full text
    Wastewater-based surveillance (WBS) for SARS-CoV-2 RNA is a promising complementary approach to monitor community viral circulation. A myriad of factors, however, can influence RNA concentrations in wastewater, impeding its epidemiological value. This article aims to provide an overview and discussion of factors up to the sampling stage that impact SARS-CoV-2 RNA concentration estimates in wastewater. To this end, a systematic review was performed in three databases (MEDLINE, Web of Science and Embase) and two preprint servers (MedRxiv and BioRxiv). Two authors independently screened and selected articles published between January 1, 2019 and May 4, 2021. A total of 22 eligible articles were included in this systematic review. The following factors up to sampling were identified to have an influence on SARS-CoV-2 RNA concentrations in wastewater and its interpretation: (i) shedding-related factors, including faecal shedding parameters (i.e. shedding pattern, recovery, rate, and load distribution), (ii) population size, (iii) in-sewer factors, including solid particles, organic load, travel time, flow rate, wastewater pH and temperature, and (iv) sampling strategy. In conclusion, factors influencing SARS-CoV-2 RNA concentration estimates in wastewater were identified and research gaps were discussed. The identification of these factors supports the need for further research on WBS for COVID-19

    Analytical investigation of cannabis biomarkers in raw urban wastewater to refine consumption estimates

    No full text
    Wastewater analysis of Δ9-tetrahydrocannabinol (THC) biomarkers can provide essential information on trends in cannabis consumption. Although analysis is mostly focused on the aqueous phase, previous studies have illustrated the need of improving the measurements of raw influent wastewater (IWW) considering also suspended solids. This is important for cannabis biomarkers, because a substantial part of them is expected to be found in the suspended solids due to their more lipophilic character compared with other metabolites/drugs included in these types of studies. However, it remains open to which extent trend estimates might be affected by solely analysing the liquid phase. To investigate this aspect, robust analytical methodologies are required to measure both the liquid and solid phases of IWW. In this work, we firstly tested liquid-liquid extraction (LLE) for THC and its major metabolites (THCsingle bondOH, and THCsingle bondCOOH). Using LLE, no filtration or centrifugation step was required for raw IWW analysis, and the three analytes were extracted from both the liquid and the solid phase simultaneously. In parallel, the raw IWW was centrifuged and the obtained solid and liquid phases were analyzed separately: the liquid phase by both LLE and solid phase extraction (SPE) for comparison of data, and the suspended solids by solid-liquid extraction (SLE). The separate analysis of both phases in a number of samples revealed that a significant amount of cannabis biomarkers (ranging from 42 to 90%) was found in the suspended solids. In addition, the total amount of cannabis biomarkers obtained by analysing raw IWW on the one hand, and by separate analysis of the liquid and the solid phases, on the other hand, was in good agreement. Data from this study show that the sole analysis of the liquid phase would lead to a notable underestimation of cannabis biomarkers concentrations in IWW

    An exploratory approach for an oriented development of an untargeted hydrophilic interaction liquid chromatography-mass spectrometry platform for polar metabolites in biological matrices

    No full text
    The analysis of polar metabolites based on liquid chromatography-mass spectrometry (LC-MS) methods should take into consideration the complexity of interactions in LC columns to be able to cover a broad range of metabolites of key biological pathways. Therefore, in this study, different chromatographic columns were tested for polar metabolites including reversed-phase and hydrophilic interaction liquid chromatography (HILIC) columns. Based on a column screening, two new generations of zwitterionic HILIC columns were selected for further evaluation. A tree-based method optimization was applied to investigate the chromatographic factors affecting the retention mechanisms of polar metabolites with zwitterionic stationary phases. The results were evaluated based on a scoring system which was applied for more than 80 polar metabolites with a high coverage of key human metabolic pathways. The final optimized methods showed high complementarity to analyze a wide range of metabolic classes including amino acids, small peptides, sugars, amino sugars, phosphorylated sugars, organic acids, nucleobases, nucleosides, nucleotides and acylcarnitines. Optimized methods were applied to analyze different biological matrices, including human urine, plasma and liver cell extracts using an untargeted approach. The number of high-quality features ( < 30% median relative standard deviation) ranged from 3,755 for urine to 5,402 for the intracellular metabolome of liver cells, showing the potential of the methods for untargeted purposes

    Evaluating the impact of COVID-19 countermeasures on alcohol consumption through wastewater-based epidemiology: A case study in Belgium

    No full text
    Wastewater-based epidemiology (WBE) is a complementary approach to monitor alcohol consumption in the general population. This method measures concentrations of xenobiotic biomarkers (e.g., ethyl sulphate) in influent wastewater (IWW) and converts these to population-normalized mass loads (PNML, in g/day/1000 inhabitants) by multiplying with the flow rate and dividing by the catchment population. The aims of this case study were to: (i) investigate temporal trends in alcohol use during the COVID-19 pandemic; and (ii) measure the effect of policy measures on alcohol consumption. Daily 24-h composite IWW samples (n = 735) were collected in the wastewater treatment plant of the university city of Leuven (Belgium) starting from September 2019 to September 2021. This is the first study that investigates alcohol use through WBE for a continuous period of two years on a daily basis. Mobile phone data was used to accurately capture population fluxes in the catchment area. Data was evaluated using a time series based statistical framework to graphically and quantitatively assess temporal differences in the measured PNML. Different WBE studies observed temporal changes in alcohol use during the COVID-19 pandemic. In this study, the PNML of ethyl sulphate decreased during the first lockdown phase, potentially indicating that less alcohol was consumed at the Leuven area during home confinement. Contrastingly, alcohol use increased after the re-opening of the catering industry. Additionally, a decrease in alcohol use was observed during the exam periods at the University of Leuven and an increase during the holiday periods. The present study shows the potential of WBE to rapidly assess the impact of some policy measures on alcohol consumption in Belgium. This study also indicates that WBE could be employed as a complementary data source to fill in some of the current knowledge gaps linked to lifestyle behavior
    corecore