39 research outputs found
Long-term sound and movement recording tags to study natural behavior and reaction to ship noise of seals
This study was funded by the German Federal Agency of Nature Conservation under the project “Effects of underwater noise on marine vertebrates” (Cluster 7, Z1.2‐53302/2010/14) and “Under Water Noise Effects – UWE” (Project numbers FKZ 3515822000). MJ was supported for development of the tags by a Marie Sklodowska‐Curie career integration grant and by the Marine Alliance for Science and Technology Scotland. PTM and DMW were partly supported by a large frame grant from the Danish National Research Council. DMW was also supported by an Office of Naval Research grant to Jeremy Goldbogen at Stanford University.1. The impact of anthropogenic noise on marine fauna is of increasing conservation concern with vessel noise being one of the major contributors. Animals that rely on shallow coastal habitats may be especially vulnerable to this form of pollution. 2. Very limited information is available on how much noise from ship traffic individual animals experience, and how they may react to it due to a lack of suitable methods. To address this, we developed long-duration audio and 3D-movement tags (DTAGs) and deployed them on three harbor seals and two gray seals in the North Sea during 2015-2016. 3. These tags recorded sound, accelerometry, magnetometry, and pressure continuously for up to 21 days. GPS positions were also sampled for one seal continuously throughout the recording period. A separate tag, combining a camera and an accelerometer logger, was deployed on two harbor seals to visualize specific behaviors that helped interpret accelerometer signals in the DTAG data. 4. Combining data from depth, accelerometer, and audio sensors, we found that animals spent 6.6%-42.3% of the time hauled out (either on land or partly submerged), and 5.3%-12.4% of their at-sea time resting at the sea bottom, while the remaining time was used for traveling, resting at surface, and foraging. Animals were exposed to audible vessel noise 2.2%-20.5% of their time when in water, and we demonstrate that interruption of functional behaviors (e.g., resting) in some cases coincides with high-level vessel noise. Two-thirds of the ship noise events were traceable by the AIS vessel tracking system, while one-third comprised vessels without AIS. 5. This preliminary study demonstrates how concomitant long-term continuous broadband on-animal sound and movement recordings may be an important tool in future quantification of disturbance effects of anthropogenic activities at sea and assessment of long-term population impacts on pinnipeds.Publisher PDFPeer reviewe
Pathological findings in the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides), with special emphasis on infectious and zoonotic agents in Northern Germany
Anthropogenic landscape changes contributed to the reduction of availability of habitats to wild animals. Hence, the presence of wild terrestrial carnivores in urban and peri-urban sites has increased considerably over the years implying an increased risk of interspecies spillover of infectious diseases and the transmission of zoonoses. The present study provides a detailed characterisation of the health status of the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides) in their natural rural and periurban habitats in Schleswig-Holstein, Germany between November 2013 and January 2016 with focus on zoonoses and infectious diseases that are potentially threatening to other wildlife or domestic animal species. 79 red foxes, 17 stone martens and 10 raccoon dogs were collected from traps or hunts. In order to detect morphological changes and potential infectious diseases, necropsy and pathohistological work-up was performed. Additionally, in selected animals immunohistochemistry (influenza A virus, parvovirus, feline leukemia virus, Borna disease virus, tick-borne encephalitis, canine adenovirus, Neospora caninum, Toxoplasma gondii and Listeria monocytogenes), next-generation sequencing, polymerase chain reaction (fox circovirus) and serum-neutralisation analysis (canine distemper virus) were performed. Furthermore, all animals were screened for fox rabies virus (immunofluorescence), canine distemper virus (immunohistochemistry) and Aujeszky's disease (virus cultivation). The most important findings included encephalitis (n = 16) and pneumonia (n =20). None of the investigations revealed a specific cause for the observed morphological alterations except for one animal with an elevated serum titer of 1:160 for canine distemper. Animals displayed macroscopically and/or histopathologically detectable infections with parasites, including Taenia sp., Toxocara sp. and Alaria alata. In summary, wildlife predators carry zoonotic parasitic disease and suffer from inflammatory diseases of yet unknown etiology, possibly bearing infectious potential for other animal species and humans. This study highlights the value of monitoring terrestrial wildlife following the "One Health" notion, to estimate the incidence and the possible spread of zoonotic pathogens and to avoid animal to animal spillover as well as transmission to humans
Beached bachelors: An extensive study on the largest recorded sperm whale Physeter macrocephalus mortality event in the North Sea
Between the 8th January and the 25th February 2016, the largest sperm whale Physeter macrocephalus mortality event ever recorded in the North Sea occurred with 30 sperm whales stranding in five countries within six weeks. All sperm whales were immature males. Groups were stratified by size, with the smaller animals stranding in the Netherlands, and the largest in England. The majority (n = 27) of the stranded animals were necropsied and/ or sampled, allowing for an international and comprehensive investigation into this mortality event. The animals were in fair to good nutritional condition and, aside from the pathologies caused by stranding, did not exhibit significant evidence of disease or trauma. Infectious agents were found, including various parasite species, several bacterial and fungal pathogens and a novel alphaherpesvirus. In nine of the sperm whales a variety of marine litter was found. However, none of these findings were considered to have been the primary cause of the stranding event. Potential anthropogenic and environmental factors that may have caused the sperm whales to enter the North Sea were assessed. Once sperm whales enter the North Sea and head south, the water becomes progressively shallower (<40 m), making this region a global hotspot for sperm whale strandings. We conclude that the reasons for sperm whales to enter the southern North Sea are the result of complex interactions of extrinsic environmental factors. As such, these large mortality events seldom have a single ultimate cause and it is only through multidisciplinary, collaborative approaches that potentially multifactorial large-scale stranding events can be effectively investigated
Working Group on Marine Mammal Ecology (WGMME)
162 pages.-- This work is licensed under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0)The Working Group on Marine Mammal Ecology met in 2021 to address new information on marine mammal ecology relevant to management.
Two terms of references were standing ToRs; under the first of these, ToR A, new and updated information on seal and cetacean population abundance, population/stock structure, manage-ment frameworks as well as anthropogenic threats to individual health and population status were reviewed along with findings on threats to marine mammals such as bycatch, pollution, marine debris and noise. ToR B is a cooperation with WGBIODIV to review species-specific for-aging distributions (considering horizontal and vertical dimensions depending on data availa-bility) and to estimate consumption by marine mammal species representative in case study ar-eas. ToR C was implemented to review aspects of marine mammal fishery interactions not cov-ered by ICES WGBYC. ToR D is the second standing ToR and concerns updating the WGMME seal database, which was updated with the latest dataN
Working Group on Marine Mammal Ecology (WGMME)
159 pages.-- This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0)The Working Group on Marine Mammal Ecology met in 2022 to address five terms of reference. Under the first of these, ToR A, new information on cetacean and seal population abundance, distribution, population/stock structure, was reviewed, including information on vagrant ma-rine mammal species. This was done to ensure the recording of possible range changes in marine mammal species in the future.
For cetaceans, an update is given for the different species, providing for a latest estimate for all species studies. In this report, particular attention is given to the updating of information from Canadian and US waters, and together with those countries, latest estimates for cetacean species are provided. For seals, latest monitoring results are given for harbour, grey and Baltic ringed seals. In addition, where possible, local long-term trends are illustrated for those species, based on earlier WGMME efforts to assemble these data into the WGMME seal database. For both spe-cies’ groups, a first account of vagrant species is providedN
hs16_265c_track
Track file for harbour seal hs16_265
gs15_139b_TOLs
TOL levels for the entire recording period for grey seal gs15_139b. Data is structured per day in 30 sec average