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Abstract

Anthropogenic landscape changes contributed to the reduction of availability of habitats to

wild animals. Hence, the presence of wild terrestrial carnivores in urban and peri-urban sites

has increased considerably over the years implying an increased risk of interspecies spill-

over of infectious diseases and the transmission of zoonoses. The present study provides a

detailed characterisation of the health status of the red fox (Vulpes vulpes), stone marten

(Martes foina) and raccoon dog (Nyctereutes procyonoides) in their natural rural and peri-

urban habitats in Schleswig-Holstein, Germany between November 2013 and January 2016

with focus on zoonoses and infectious diseases that are potentially threatening to other wild-

life or domestic animal species. 79 red foxes, 17 stone martens and 10 raccoon dogs were

collected from traps or hunts. In order to detect morphological changes and potential infec-

tious diseases, necropsy and pathohistological work-up was performed. Additionally, in

selected animals immunohistochemistry (influenza A virus, parvovirus, feline leukemia

virus, Borna disease virus, tick-borne encephalitis, canine adenovirus, Neospora caninum,

Toxoplasma gondii and Listeria monocytogenes), next-generation sequencing, polymerase

chain reaction (fox circovirus) and serum-neutralisation analysis (canine distemper virus)

were performed. Furthermore, all animals were screened for fox rabies virus (immunofluo-

rescence), canine distemper virus (immunohistochemistry) and Aujeszky’s disease (virus

cultivation). The most important findings included encephalitis (n = 16) and pneumonia (n =
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20). None of the investigations revealed a specific cause for the observed morphological

alterations except for one animal with an elevated serum titer of 1:160 for canine distemper.

Animals displayed macroscopically and/or histopathologically detectable infections with par-

asites, including Taenia sp., Toxocara sp. and Alaria alata. In summary, wildlife predators

carry zoonotic parasitic disease and suffer from inflammatory diseases of yet unknown etiol-

ogy, possibly bearing infectious potential for other animal species and humans. This study

highlights the value of monitoring terrestrial wildlife following the “One Health” notion, to esti-

mate the incidence and the possible spread of zoonotic pathogens and to avoid animal to

animal spillover as well as transmission to humans.

Introduction

Wild carnivores have increasingly entered human habitats within the past decades, mainly due

to anthropogenic habitat alterations as a result of the growing human population [1–4]. The

unintentional convergence of human and wildlife populations has been enhanced by several

predator species which readily learn to take advantage of easily accessible food sources in

urban and peri-urban habitats [2, 4]. One of these highly adaptable predators is the red fox

(Vulpes vulpes), that is the most widespread wild terrestrial carnivore in European countries

like Germany, Estonia, Great Britain, and Switzerland [5–8]. Moreover, the red fox was the

first wild carnivore which was subjected to scientific investigation, due to its increasing occur-

rence in British cities in the 1930s [7]. Due to its high adaptability and an area-wide rabies

eradication programme using oral vaccination in the 1980s, the red fox population has consid-

erably increased in Germany [9]. Another common wild predator in Germany, with stable

population numbers since the early 1980s, is the stone marten (Martes foina, [9, 10]). In addi-

tion, the raccoon dog (Nyctereutes procyonoides), an invasive species, imported from Asia as a

fur-bearing animal to Eastern Europe has expanded its range throughout Germany since the

1960s [11]. All these species have started to invade human habitats due to the benefits of

urbanisation and now live in close contact with humans, exposing them to a number of poten-

tially zoonotic diseases. To prevent and control the spillover of potentially zoonotic and/or

infectious pathogens, new interdisciplinary collaborations like the “One Health” concept have

been established [12]. While the fox rabies virus (Rabies lyssavirus) has been eradicated in Ger-

many [13], other infectious diseases of wild carnivores, including zoonotic parasitoses such as

Echinococcus multilocularis, viral (e.g. canine distemper virus (CDV) or avian influenza virus

and bacterial (e.g. Listeria monocytogenes) pathogens, still represent a potential threat to

humans who come into contact with those predators or their excretions [2, 14, 15].

Parasitic diseases of wild carnivores harbouring zoonotic potential include Echinococcus
multilocularis, Taenia spp., Alaria alata, Uncinaria stenocephala, Ancylostoma caninum, Toxo-
cara canis and Toxascaris leonina, causing a variety of diseases in humans mainly due to

migrating larvae [2, 16]. Additionally, Toxoplasma gondii and Neospora caninum represent

parasitic diseases with a considerable economic impact within ruminants due to foetal mortal-

ity caused by intrauterine infections as well as severe neurological deficits in dogs. Further,

Toxoplasmosis is known to cause disease in humans not only in pregnancies but also in immu-

nocompetent adults in which some strains lead to severe pneumonia and encephalitis [17, 18].

Neospora caninum has additionally been described as an opportunistic pathogen of HIV-

infected patients and patients with neurological disorders [19–21]. Another well known zoo-

nosis carried by wild carnivores is echinococcosis, with two important types for humans.
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These are, according to their wide geographical distribution as well as their medical and eco-

nomic impact, cystic echinococcosis caused by Echinococcus granulosus and alveolar echino-

coccosis induced by Echinococcus multilocularis [22, 23]. Echinococcus granulosus plays a

minor role in wild carnivores in Western and Central Europe. In contrast, a major role for the

transmission of Echinococcus multilocularis is attributed to the red fox, the raccoon dog and

the Arctic fox as definitive hosts [23]. Rodents are the intermediate hosts within the sylvatic

cycle [23]. Domestic dogs can function as susceptible definitive hosts by becoming infected via

ingestion of wild intermediate hosts [24]. Infections of humans usually occur through inges-

tion of infectious eggs and can lead to larval encystation and proliferation mainly in the liver

with a subsequent spread via blood and lymph vessels to other organs [22, 23].The wide variety

of known zoonotic diseases in wild carnivores highlights the necessity of periodical monitoring

of the wildlife population to allow a proper assessment of the current health status and para-

sitic burden in predators and their role in zoonotic and infectious disease transmission and

potential spillover.

In addition, consideration should be given to morbilliviruses, with special emphasis on

canine distemper virus (CDV). This paramyxovirus has increasingly spread among wildlife

populations including carnivorous species like red foxes, raccoons, raccoon dogs or minks, but

also infects marine mammals [25–28]. This has been shown in massive outbreaks with high

mortality rates among the seal population in 1988, 2000, 2001 and 2002 in Europe, caused by

CDV and the closely related but genetically different phocine distemper virus (PDV) in the

North Sea, East Greenland Coast, Caspian Sea and Lake Baikal, respectively [25, 29–31]. In

cases where CDV has been demonstrated to be the causative agent, it has been assumed that

terrestrial carnivores might have caused a spillover towards the marine population [25]. This

phenomenon has already been described as a possible route of infection between different car-

nivore species as well as within non-human primates [29, 32, 33].

In addition, the recent outbreak of the highly pathogenic avian influenza A virus in harbour

seals (H10N7) in the coastal waters of Schleswig-Holstein, Germany resulted in numerous

dead seals [34]. In this context, other investigations have demonstrated a natural infection

with avian influenza virus (H5N1) in a stone marten [35] as well as the possible susceptibility

of red foxes to become infected by eating infected bird carcasses [36].

These events highlight the necessity of monitoring wild carnivores’ susceptibility to CDV

and avian influenza A virus to predict possible epidemic spread among these populations, as

well as possible transmission to domestic dogs or cats.

Moreover, the introduction of new diagnostic tools including molecular methods, such as

next generation sequencing (NGS), enables the detection of potentially unknown infectious

diseases, especially viral infections in animals displaying lesions of unknown etiology. This

approach has led to a number of newly detected viruses in various animal species in recent

years [37–40] and might be of great interest for detecting potentially zoonotic and infectious

diseases in wildlife species.

This scientific approach of an overall contemplation of animal diseases in relation to the

urban wildlife-human interface follows the idea of “One Health” notion, aiming at a conceived

observation of the current health status of wildlife animals in Northern Germany to allow early

detection of possible threats to the wildlife population, humans and domestic animal species.

Materials and methods

Investigated animals and histology

A total of 79 foxes, 17 stone martens and ten raccoon dogs were examined (S1 Table). Of the

79 foxes, 15 were juveniles (deciduous teeth) and 64 were adults (permanent teeth) with a
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gender distribution of 36 males and 43 females. Of the collected stone martens, 15 were adults

and two were juveniles, six of them were males and 11 were females. Similarly, eight raccoon

dogs showed permanent teeth (adults) and two showed deciduous teeth (juveniles), with 3

males and 7 females.

Animals included in this study were either trapped and euthanised, hunted during the

licenced hunting season or found dead. These hunts aim at reducing predator pressure on

wildlife in the state of Schleswig-Holstein. Selection of animals was random. The animals were

collected between November 2013 and January 2016 in North Frisia, Dithmarschen, Osthol-

stein and Rendsburg-Eckernförde. These are districts of the state of Schleswig-Holstein (Fig 1).

Of the 79 foxes, 27 (11 males, 16 females) were caught in a concrete pipe trap, and 15 (six

males, nine females) of the 17 stone martens were caught in a wooden box trap. All of the ani-

mals were adults, except for a juvenile male red fox and a juvenile female stone marten. The

number of trapped animals varied with the year of collection (2013—eight red foxes, eight

stone martens; 2014–17 red foxes, four stone martens; 2015 –two red foxes, three stone mar-

tens). The majority of the animals (21 red foxes, 13 stone martens) were trapped during the

control season, (between October and February), while the other animals (two red foxes, one

stone marten) were trapped between March and August. None of the animals were reported to

show any clinical signs of disease or abnormal behaviour. Trapped animals that underwent

general clinical examination did not display signs of disease either. Trapped animals were

anaesthetised intra-muscularly using a combination of medetomidine (fox: 0.1mL/2kg; stone

marten 0.1 mL/1kg; Cepedor1, CP-Pharma, Burgdorf, Germany) and ketamin (fox: 0.1mL/

1kg; stone marten: 0.1mL/1g; Ketamin1, CP-Pharma, Burgdorf, Germany). Subsequently,

euthanasia was performed using embutramide, mebezonium iodide, tetracaine hydrochloride

(T611, MSD, Unterschleissheim, Germany), intracardially (1.5 mL/kg). Remaining foxes,

stone martens and all raccoon dogs were either killed by shooting during legal hunts or were

found dead (S1 Table). Animal trapping, handling and euthanasia were conducted in accor-

dance with the German Animal Welfare Law and all experiments were approved by the official

agency for animal experiments in Schleswig-Holstein, The Ministry of Energy, Agriculture,

the Environment and Rural Areas (MELUR) under the permit V242-7224.121–19.

Afterwards, all animals were sent to the Department of Pathology at the University of Vet-

erinary Medicine Hannover, Germany, either refrigerated or deep frozen and subsequently

examined during a complete necropsy.

Gross lesions were frequently related to extensive traumatic lesions of the musculoskeletal

system caused by the gunshots and included muscle and organ lacerations, bone fractures and

acute haemorrhages. These lesions were not included in the evaluation of the health status.

Histopathology

Organ samples taken from each animal included central and peripheral nervous system, upper

and lower respiratory tract, gastrointestinal tract (oesophagus, stomach, small and large intes-

tine and rectum, including anal sacs), liver, spleen, pancreas, urogenital tract (kidneys, urinary

bladder, gonads, prostate gland), heart, lymphatic organs (spleen, lymph nodes, thymus if

present), bone marrow, skeletal muscle, endocrine organs (thyroid glands, andrenal glands,

hypophysis), skin and eye. Samples from each organ were collected and fixed in 10% neutral-

buffered formalin for 24–48 hours, dehydrated, embedded in paraffin wax and sections were

stained with hematoxylin-eosin (HE). Tissues with granulomatous inflammation were exam-

ined by Ziehl-Neelsen staining for visualising Encephalitozoon cuniculi organisms and acid-

fast bacteria as described by Haist [42]. Selected cases with suspected mineralisation of tissues

were additionally examined by von-Kossa staining.
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Testing for fox rabies and Aujeszky’s disease

In order to rule out fox rabies virus and Aujeszky’s disease virus, samples were collected from

each animal and examined at the Department of Consumer and Food Safety of Lower-Saxony,

Hannover, Germany. The hippocampus was examined by immunofluorescence for the pres-

ence of rabies virus antigen and samples from the brain stem, olfactory bulb, lumbar spinal

cord and trigeminal ganglion were tested for the presence of Aujeszky’s disease virus by

cultivation.

Immunohistochemistry

Immunohistochemical investigation was performed in accordance with standard procedures

as previously described [43–48]. Sections of archived material from immuno-positive animals

were used as adequate positive controls. Briefly, antigen retrieval was performed in citrate

buffer (pH 6.0, 20 min, 95˚C). Subsequently, endogenous peroxidase activity was blocked

using 0.5% hydrogen peroxide in 70% ethanol for 30 min. Nonspecific protein binding was

blocked using normal goat serum (20% in phosphate buffered saline, 30 min). Primary anti-

bodies as listed in Table 1 were added and incubated for 2 hours. To receive appropriate nega-

tive controls, primary antibodies were replaced by ascites fluid from non-immunised Balb/cJ

mice or rabbit control serum, both diluted in phosphate buffered saline with 1% bovine serum

albumin (BSA). Following this, secondary antibodies were added and incubated for 30 min.

Fig 1. Overview of all areas in natural habitats of Schleswig-Holstein from which animals were captured. In the

legend, an average human population density (inhabitants per square kilometre) is given for the respective district including

North Frisia (red), Redsburg Eckenförde (yellow), Dithmarsch (blue) and Ostholstein (green; Statistical Office for Hamburg

and Schleswig-Holstein, 2015, [41]).

https://doi.org/10.1371/journal.pone.0175469.g001
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The avidin-biotin complex (ABC) method (VECTASTAINING Elite ABC Kit, Vector Labora-

tories, Burlingame, California, USA) was undertaken according to the manufacturer’s instruc-

tions. 3, 30-diaminobenzidine-tetrahydrochloride (DAB, Sigma-Aldrich, Munich, Germany)

was used as chromogen. Sections were counter-stained with Mayer’s hematoxylin. Routinely, a

spectrum of organs from each animal, including cerebellum, lungs, stomach, urinary bladder,

spleen and lymph nodes (Lymphonodi mesenteriales, tracheobrochiales, poplitei and retrophar-
yngeales), as well as inflamed areas, were used for detecting distemper virus antigen. In addi-

tion, lungs from foxes and stone martens killed at the North Sea coast during the seal influenza

outbreak in 2014/2015 [34] were investigated using an influenza A virus specific antibody. All

animals with inflammatory CNS lesions were further investigated using a series of antibodies

and further methods, as summarised in Tables 1 and 2.

Viral metagenomics and RT-PCR

Brain tissue samples of six different animals (five foxes and one stone marten; S2 Table) were

analysed by sequence-independent RNA and DNA virus screening and next-generation

sequencing (NGS) using the 454 Sequencing platform (GS Junior, Roche) as previously

Table 1. Antibodies used for detecting viral and protozoal antigens.

Infectious agent Clone Specificity Supplier/Reference Clonality and

source

Dilution

Canine distemper

virus

anti-canine distemper

nucleoprotein antibody (#25)

Nucleoprotein Prof. Örvell a/Baumgärtner [49] Polyclonal rabbit 1:2000

Influenza A HB65 Nucleoprotein European Veterinary Laboratory b/

van Baalen [50]

Monoclonal

mouse

1:200

Parvovirus CPV1-2A1 Unknown Custom Monoclonal Antibodies

International c/Kipar [51]

Monoclonal

mouse

1:200

Feline leukaemia virus C11D8 Glycoprotein 70 Custom Monoclonal Antibodies

International d/Elder [52]

Monoclonal

mouse

1:200

Borna disease virus Bo18 Nucleoprotein Dr. Herzog d Monoclonal

mouse

1:500

Tick-borne

encephalitis

K-D-3.BA Not stated Prof. Holzmannf/Weissenböck [53] Polyclonal rabbit 1:300

Toxoplasma gondii Not stated Quartett g/Klein [54], Brack [55] Polyclonal rabbit 1:75

Neospora caninum Not stated Dr. Schares h Monoclonal

mouse

1:2

Canine adenovirus 1 The whole CAV1 tribe

“Mirandola”

Chemicon i Monoclonal

mouse

1:250

Listeria

monocytogenes 1,4

The whole organism Difco Laboratories j Polyclonal rabbit 1:2000

CPV, canine parvo virus; Bo, Borna disease;
a Central Microbiological Laboratory of Stockholm county, Stockholm Council, Sweden;
b Woerden, the Netherlands;
C Sacramento, California, USA
dInstitute of Virology, Justus Liebig University, Giessen, Germany;
e Vienna, Austria;
f Berlin, Germany;
g Munich, Germany;
h Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald—Insel Riems, Germany;
i Hamburg, Germany;
j Detroit, USA

https://doi.org/10.1371/journal.pone.0175469.t001
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described [56, 57]. Obtained reads were analysed by BLASTN and BLASTX with a bioinfor-

matics virus discovery pipeline using standard parameters as previously described [58]. The

European Nucleotide Archive Study accession number of this study is PRJEB19187, with sec-

ondary study accession number ERP021170.

Foxes with non-suppurative encephalitis were tested for the presence of fox circovirus

DNA using real-time quantitative polymerase chain reaction (PCR, [59]). DNA was isolated

from formalin-fixed paraffin embedded tissue (FFPE) according to the manufacturer´s proto-

col (QIAamp DNA FFPE Tissue Kit; Qiagen, Venlo, the Netherlands) as described previously

[60]. Briefly, eight 7 μm thick sections of FFPE tissue were de-paraffinised, lysed under dena-

turing conditions with proteinase K and incubated at 90˚C to reverse formalin crosslinking.

Table 2. Summary of all performed investigations including animal species, tissues investigated and method applied.

Method Animals tested Results Used

material

Red fox

(n = 79)

Stone marten

(n = 17)

Raccoon dog

(n = 10)

Red fox

(n = 79)

Stone marten

(n = 17)

Raccoon dog

(n = 10)

IHC FFPEa

CDV 79 17 10 - - -

FeLv 9 4 3 - - -

Parvovirus 9 4 3 - - -

Borna disease 9 4 3 - - -

Toxopasma gondii 9 4 3 - - -

Influenza A 17 5 3 - - -

Tick-borne encephalitis 9 4 3 - - -

Neospora caninum 9 4 3 - - -

Listeria monocytogenes 9 4 3 - - -

Canines adenovirus 1 9 4 3 - - -

PCR FFPEb

fox circovirus DNA 9 n.t. n.t. - n.t. n.t

SNT 16 n.t. 2 + n.t. - Serum

NGS 5 1 n.t. 2+ - n.t Native

materialc

IF

Fox rabies virus 79 17 10 - - - Native

materiald

Virus cultivation Native

materiale

Herpes suis (Aujeszky’s

disease)

79 17 10 - - -

Ziehl-Neelsen staining FFPEf

acid-fast bacteria/

Enzephalitozoon cuniculi

1 2 4 - - -

FFPE, Formalin-fixed paraffin-embedded; IHC, Immunohistochemisty; PCR, Polymerase chain reaction; SNT, Serum neutralization test; NGS, Next

generation sequencing; IF, Immunofluorescence; Native material (fresh non formalin-fixated material);
a Brain tissue or lung tissue depending on the localisation of the lesion;
b brain tissue;
ccerebrum;
d hippocampus;
e brain stem, olfactory bulb, lumbar spinal cord & trigeminal ganglion;
f lung- or brain tissue; -, negative; +, positive; n.t., not tested

https://doi.org/10.1371/journal.pone.0175469.t002
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DNA was purified using a silica gel-based membrane. Real- time quantitative PCR (RT-qPCR)

was performed as formerly described with minor variations using fox circovirus specific prim-

ers VS756 (50-TCCGAGATAGCCGGCGTGGTA-30) and VS757 (50-CCCGGCCACAGATCAAG
TACTTA-30, [58]), the Mx3005P QPCR System (Agilent Technologies, Santa Clara, USA) and

pre-diluted SYBR-Green qPCR master mix (Brilliant III Ultra-Fast SYBR Green QPCR Master

Mix; Agilent Technologies, Santa Clara, USA). 50ng/μl of isolated DNA per sample served as a

template and a run was performed according to the manufacturer´s protocol with minor varia-

tions under the following conditions: 95˚C for 3min; 95˚C for 5 sec and 60˚C for 20 sec

repeated 35 times; 95˚C for 1 min, 55˚C for 30 sec and 95˚C for 30 sec. A no template control

was included in the run. The isolated fox DNA served as positive control, using canine Glyceri-

naldehyd-3-phosphat-Dehydrogenase (GAPDH) specific primers (forw: 50-GTCATCAACGG
GAAGTCCATCTC-30; rev: 50-AACATACTCAGCACCAGCATCAC-30) as well as DNA from a

pig suffering from porcine circovirus 2 (PCV-2) using PCV-2 specific primers (forw: 5´-GCA
CCCTGTAACGTTTGTCA-3´; rev: 5´ATTTTCCCGCTCACTTTCAA3´).

Serum neutralisation test

Serum samples from 30 animals (16 foxes, 12 stone martens and two raccoon dogs) were

examined for the presence of anti-CDV neutralising antibodies. A standard test was performed

as previously described [61, 62]. Sera were heat inactivated for 30 minutes and prepared in a

starting dilution, 1:10 in medium within 96-well microtitration plates (Nunc, Roskilde, Den-

mark). A twofold serum dilution of 50 μl was tested in quadruplicate. Subsequently, 50 μl

including a 100 media tissue culture infection dose of the Onderstepoort CDV strain (Ond-

CDV; kindly provided by A.E. Metzler, Institute of Virology, University Zurich, Switzerland,

[63]) was added to each well and incubated for 1 hour at 37˚C. Afterwards, 100 μl of a Vero

cell suspension were added and the plates were incubated under standard culture conditions

for 3 to 5 days. Following incubation, wells were examined for the neutralising capacity of the

sera which is detected by inhibiting the cytopathic effect induced by the presence of the Ond-

CDV [61]. Further calculation of the neutralisation titer was performed according to Reed and

Muench [64].

Results

Distribution of lesions and immunohistochemical results

Lesions identified in the different species are summarised in Fig 2 listed by organ systems. All

investigated animals and relevant morphological alterations are listed in S1 Table.

Central Nervous System (CNS). In nine (11.4%) foxes, four (23.5%) stone martens and

three (30%) raccoon dogs, a mild to moderate, multifocal, mostly lymphohistiocytic perivascu-

lar encephalitis with few plasma cells (Fig 3), partly with involvement of the meninges (7/ 16

animals; 44%) was observed. One of the raccoon dogs had a granulomatous encephalitis (Fig

3). These cases were further investigated by immunohistochemistry and were negative for

canine distemper virus (CDV) antigen, as well as for Borna virus, feline leukaemia virus

(FeLV), parvovirus, tick-borne encephalitis (TBE) virus, influenza A virus, canine adenovirus

(CAV1), Listeria monocytogenes, Neospora caninum and Toxoplasma gondii. Ziehl-Neelsen

staining for visualising Encephalitozoon cuniculi spores was also negative. In addition, six of

these cases underwent analysis by next generation sequencing; however, no specific virus frag-

ments were identified. Additional morphological findings in the CNS included single cases of

white matter vacuolisation, meningeal mineralisation and mild gliosis.

Respiratory system. Significant lesions of the respiratory system were generally rare, mild

and characterised by inflammatory changes. 5 out of 79 foxes (6%) exhibited Capillaria sp.

Pathological findings in wild terrestrial carnivores in Northern Germany

PLOS ONE | https://doi.org/10.1371/journal.pone.0175469 April 11, 2017 8 / 20

https://doi.org/10.1371/journal.pone.0175469


Fig 2. Distribution of lesions in the organ systems of foxes, stone martens and raccoon dogs in

percentage of animals affected. CNS = central nervous system.

https://doi.org/10.1371/journal.pone.0175469.g002
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eggs within the nasal and/or tracheal mucosa (Fig 4), accompanied by minimal, lymphohistio-

cytic and eosinophilic inflammation. A mild pneumonia and/or bronchopneumonia, with var-

iable infiltration by lymphocytes, plasma cells, macrophages and occasionally eosinophils was

present in 16 (20.3%) foxes, one (5.9%) stone marten and in three (30%) raccoon dogs. Granu-

lomatous pneumonia was present in five foxes (6%), two stone martens (11%) and three rac-

coon dogs (30%). Ziehl-Neelsen staining was negative and no causative agents were identified

within the granulomatous lesions. Also, immunohistochemistry for influenza A virus was neg-

ative in eight foxes (10%) and one stone marten (5.9%) with interstitial pneumonia. In three

foxes (3.7%) and four raccoon dogs (40%) Alaria alata mesocercaria (Fig 4) were present with-

out associated lesions. Other findings in the respiratory tract were focal osseous metaplasia,

alveolar histiocytosis and multifocal lipid pneumonia in one animal each.

Cardiovascular system. Cardiovascular lesions were only present in foxes. Two of the

examined animals (mature red foxes, according to the teeth condition) displayed myxoid

degeneration of the valvular stroma at the atrioventricular valves indicating valvular endocar-

diosis. In addition, one fox showed mild lymphohistiocytic myocarditis and focal myocardial

mineralisation was observed in another animal. Moreover, dextroposition of the aorta was

observed in one fox. An aortic aneurysm was detected in another animal. In one marten, intra-

myocardial Sarcocystis cysts were observed.

Digestive tract. Most digestive tract lesions were locally circumscribed and of a low

degree of severity. Ulcerative and granulomatous glossitis, partly with intralesional foreign

material resembling plant material and hair fragments were present in eight animals (five

foxes (6.3%); one stone marten (5.9%) and two raccoon dogs (20%)). One animal showed loss

Fig 3. Inflammatory lesions in wild carnivores. (A, B) Cerebrum. Encephalitis in a fox (A; HE x400) and a stone marten (B; HE

x200), displaying mild to moderate, perivascular, lymphohistiocytic and plasmacytic infiltration (arrowheads). (C) Cerebral cortex.

Granulomatous encephalitis in a raccoon dog. Focal granulomatous encephalitis with a necrotic centre (asterisk) and mild

compression of the surrounding neuroparenchyma (arrowhead) are present (HE x200). (D) Liver. Hepatitis in a stone marten. Mild,

multifocal, mostly periportal, lymphohistiocytic infiltration (arrowhead; HE x400). (E) Kidney. Nephritis in a fox. The interstitium is

expanded by moderate numbers of multifocally distributed, lymphoplasmacytic and histiocytic infiltrates (arrowhead; HE x200). (F)

Skin. Dermatitis in a fox. Focally, there is extensive ulceration with acute haemorrhage (asterisk). The underlying dermis shows

multifocal, perivascular and periadnexal chronic suppurative inflammation (arrowhead; x40). HE, hematoxylin and eosin.

https://doi.org/10.1371/journal.pone.0175469.g003
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of multiple teeth with alveolitis and gingivitis. Ten foxes had mild, bilateral, suppurative and

erosive inflammation of the tonsils. One juvenile fox suffered from diffuse, catarrhal enteritis.

Otherwise, there were no significant inflammatory lesions present in stomachs or intestines of

any of the examined animals. Additionally, histological evidence of metazoan parasites includ-

ing Taenia sp. and Toxocara sp. were found in the intestine of 13 foxes and one raccoon dog.

Furthermore, nematode stages, most likely of Ollulanus tricuspis (Fig 4), could be identified

within the stomach of one raccoon dog. A mild to moderate, lymphohistiocytic and suppura-

tive inflammation and moderate hyperkeratosis of the anal sac epithelium, partly accompanied

by nematode eggs and rarely adult stages of Capillaria sp. in the epithelium of the anal sac

Fig 4. Parasites in tissue sections. Manifestation of Capillaria infection in various tissues in foxes. (A) Nasal mucosa (N), fox. Mild,

diffuse, lymphoplasmahistiocytic inflammation. Within the lumen of the nasal cavity, there are adult nematodes (arrowhead) with a

prominent stichosome and a large number of oval, embryonated eggs (star), morphologically consistent with Capillaria sp (HE x100).

(B) Trachea, fox. Capillaria eggs (star) are also present on the surface of the tracheal mucosa (T; HE x200). (C) Anal sac, fox. The

epithelium is markedly thickened and expanded by a large number of nematode stages, adult nematodes (arrowhead) as well as

nematode eggs (asterisk) embedded in the stratum corneum (HE x100). Manifestation of trematode infection (D, E) Lung, raccoon

dog. Single adult trematodes with brownish pigment (D; asterisk) and a sucker (E, arrowhead) resembling Alaria alata. There is a lack

of pronounced inflammatory response to these parasites (HE x200). (F) Stomach, raccoon dog. Focal, granulomatous inflammation

beneath gastric glands (G) with an intralesional nematode parasite (arrow), morphologically consistent with Ollulanus tricuspis (HE

x100). Inset: Higher magnification of the nematode (HE x400). (G, H) Intestine, fox. Presence of cestodes in the intestinal lumen (HE

x200). (H) Note numerous calcareous corpuscules in the cestode organism resembling Taenia sp. (arrowheads; HE x40). (I) Kidney,

raccoon dog. Granulomatous nephritis. Centrally, there is evidence of a necrotic parasite, presumably larval stages of Toxocara

(asterisk; HE x100). HE, hematoxylin and eosin.

https://doi.org/10.1371/journal.pone.0175469.g004
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(Fig 4) were present in 25 foxes, seven stone martens and four raccoon dogs. Minimal to mild

hepatitis (Fig 3) was present in 26 of 106 animals with variable, mostly lymphohistiocytic and

periportal, necrotising or granulomatous character.

Genitourinary tract. The most consistent finding within the urinary tract was chronic

interstitial nephritis (Fig 3), mostly dominated by lymphocytes and plasma cells and occasion-

ally accompanied by interstitial fibrosis in 15 foxes. In addition, single cases of granulomatous

nephritis (n = 2), renal tubular mineralisation (n = 3), cystitis (n = 3) and endometritis (n = 2)

were diagnosed.

Musculoskeletal system. Skeletal lesions were rare. Old fractures with callus formation,

present in ribs and thoracic vertebra were seen in four foxes (5%). One aged fox showed spon-

dyloses of the lumbar spinal column and one severe arthrosis of the stifle joint. In one stone

marten, chronic gonarthrosis was present, accompanied by atrophy of the musculature of the

affected limb. Mild myofibrillar degeneration was present in the skeletal musculature of one

fox and one stone marten. Two animals showed intramuscular protozoal cysts, morphologi-

cally consistent with Sarcocystis cysts.

Integument. Four foxes and three stone martens showed macroscopic skin lesions. These

included an old wound at the limb of one fox with demarcating granulation tissue proliferation

and suppurative inflammation as well as a severe, chronic suppurative dermatitis at the ear

base of another fox. Two animals showed single focal skin ulcerations on the nasal ridge (Fig

3). The most frequent finding of the facial skin was multifocal, mild, chronic lymphohistiocytic

dermatitis which was present in nine foxes and one stone marten. In one fox, periocular der-

matitis with intralesional fungal organisms was demonstrated. Furthermore, five foxes and

four stone martens showed macroscopical evidence of ectoparasites, including nymphs or

adults of Ixodid ticks, and one fox showed a moderate flea infestation.

Miscellaneous lesions. Additional findings included a mild, suppurative and follicular

conjunctivitis in three foxes and one stone marten. Moreover, a thyroid adenoma (n = 1), a

cataract (n = 2), a nodular hyperplasia of the adrenal cortex (n = 1), lymphoplasmacytic infil-

trations of the pancreas (n = 1) and lymphadenitis (n = 7) were seen in foxes. A mild esophagi-

tis (n = 1), lymphadenitis (n = 1) and a mild adrenalitis (n = 1) were found in stone martens.

Viral metagenomics and RT-PCR

In two foxes, either one or two reads were detected that showed closest similarity to anello-

viruses, while in the brain tissue samples collected from the other three foxes and the stone

marten no reads were detected that had the closest similarity to viral sequences (S2 Table).

Investigation for fox circovirus DNA by RT-qPCR in foxes with

lymphohistiocytic encephalitis

FFPE tissue samples of the foxes suffering from lymphohisticytic encephalitis (n = 9) were

tested for circovirus DNA using RT-qPCR and specific primers. Fox circovirus DNA was not

detected in tested animals, while canine GAPDH was present in all tested fox samples with

cycle threshold (Ct)-values ranging from 21.25 to 24.61, as well as PCV-2 specific DNA in the

pig serving as additional positive control (Ct-value: 16.83).

Serum neutralisation test

30 animals (16 foxes, 12 stone martens and two raccoon dogs) were tested for the presence of

CDV antigens. Non-infected Vero cells were used as negative controls in a dilution of 1:10.

Virus titers over 1:20 were interpreted as positive after five days of incubation [64]. The results

showed that only one fox had a virus-neutralisation antibody titer of 1:160.
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Discussion

The aim of the present study was to identify ongoing infectious disease processes in wildlife

predators in Northern Germany and their potential transmission to other animal species and

humans. The major findings included (i) 46 cases (45.6% foxes, 35.3% stone martens and 40%

raccoon dogs) of endoparasitism including agents with high zoonotic potential; (ii) 17 cases

(11.4% foxes, 23.5% stone martens and 30% raccoon dogs) of encephalitis and (iii) 28 cases

(24% foxes, 17.6% stone martens and 60% raccoon dogs) with pneumonia of unknown origin.

One important feature of the present study refers to the number of parasitic infestations,

which were detected in a considerable number of animals (36/79 foxes, 6/10 raccoon dogs and

4/17 stone martens). No correlation could be made between the health status of the animals

and the severity of parasitic infestation. Histologically, adult stages of both Taenia sp. and Tox-
ocara sp. in the intestines, and Alaria sp. mesocercariae in the lung parenchyma, were detected.

These parasites are known to bear a zoonotic potential for humans [2, 65–68]. Cestodes in the

intestine of nine animals, indicates that wild carnivores play a considerable role in shedding

Echinococcus spp. eggs. This further leads to a persistent source of infection not only for

rodents but also for humans as incidental hosts [69, 70].

Even though the annual incidence of human alveolar echinococcosis in Germany seemed

to be low in 2006 [71, 72], the growing red fox population as well as the increasing urbanisa-

tion of habitats bear a high potential for zoonotic spread to humans [8, 70]. Trematodes con-

sistent with Alaria sp. further point to other, less widespread but nonetheless threatening

zoonotic parasites, which might be spread by wildlife predators and invertebrates as intermedi-

ate hosts. In paratenic hosts, such as wild boars, Alaria sp. mesocercariae may be found in adi-

pose, muscular or connective tissue, from which they can be ingested by humans eating raw or

inadequately cooked meat [66]. Few reports concerning humans exist, where the disease

occurs due to migrating larvae which penetrate the intestinal wall and manifest in various clin-

ical signs [66].

Furthermore, there has been a considerable number of animals with encephalitis of unde-

tectable cause. A detailed neurological investigation was not performed and neurological dys-

functions or behavioural impairment cannot be ruled out. However, severe neurological

impairment or clinical signs indicating CNS disease were not detected in trapped animals or

reported by hunters. The morphology of these CNS lesions pointed clearly to a viral etiology.

Nevertheless, no causative agents were detected in any of the cases despite undertaking exten-

sive immunohistochemical investigations and advanced molecular analysis to detect com-

monly known as well as new viral pathogens in carnivores. Of interest, analysis of the brain

tissues of six animals with meningo-encephalitis by viral metagenomics revealed very low

numbers, with the closest similarity to members of the Anelloviridae in two samples, while no

significant viral reads were detected in the other four brain tissues samples. These findings

indicate that it is unlikely that a high virus load was present in the tested tissue [73]. However,

it cannot be ruled out that an infection with a low viral load was present in the tested tissues,

which could be detected with other, novel NGS methods. This might be a promising approach

for further investigations. The evidence of readings with similarities to Anelloviridae is of inter-

est, as they have a high prevalence in the human population and are associated with hepatitis

or pathological conditions of the respiratory tract or immune system. Namely, there exist

some reports highlighting the disease-inducing potential of Anelloviridae [74–77]. Further-

more, they have also been detected in different animal species, thus leading to the hypothesis

that they can be transmitted to humans and vice versa [77]. However, regarding their ubiqui-

tous distribution and their unresolved pathogenicity, it is more likely that their detection only

represents a secondary, epiphenomal response [74–77]. In conclusion, the detailed role of
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anelloviruses in the present investigated cases remains unclear, and it is not likely that they are

the causative agents of the observed encephalitis.

One of the most prevalent causes for encephalitis in foxes is canine distemper virus infec-

tion [78–80]. However, immunohistochemistry revealed lacking CDV antigen expression as

well as lacking immunoreactivity for other viral antigens, namely Borna virus, feline leukaemia

virus (FeLV), parvovirus, tick-borne encephalitis (TBE) virus, influenza A virus and canine

adenovirus (CAV1). The positivity in the virus-neutralisation test in one animal indicates that

CDV infection may occur in foxes but seems to be of low prevalence in the investigated popu-

lation and region. This might partially be explained by a cyclic course of infection with epi-

sodes of disease outbreaks and disease-free intervals [81, 82]. Regarding the coincidence of the

influenza-outbreak in seals [34] and the time of hunting and trapping of predators living in

close vicinity to the coast, influenza-A-virus was regarded as a possible cause for inflammatory

lesions, especially in the respiratory tract. However, no immuno-positivity for avian influence

A virus could be demonstrated. This might be explained either by low contact with infected

animals/ carcasses, low infection pressure, or as a consequence of low susceptibility of the

investigated population to the pathogen in question.

Recent investigations of foxes in central and southern parts of Germany (Bavaria, Baden-

Wuerttemberg and Hesse) with special emphasis on Borna disease virus, revealed 10/ 16 cases

with encephalitis lacking specific pathogens [83]. Similarly, recent studies in dogs and cats

indicated that the majority of cases with encephalitis remained etiologically undetermined

[48].

Nonetheless, in all these cases, similarly to the present study, negative results do not rule

out that viral infection played a role in the development as a trigger of CNS lesions (e.g. infec-

tion may have occurred some time ago and immune response cleared the infection at the time

of investigation. Another possibility is that infections might have triggered an autoimmune

disease, molecular mimicry and/or epitope spread, resulting in a form of late sequel of virus

infection [48]. This phenomenon might explain the high number of cases with encephalitis

lacking a detectable infectious cause in the present study.

An etiological differential diagnosis for non-suppurative or granulomatous inflammation

within the CNS are specific bacteria or several protozoal or fungal organisms, most impor-

tantly Listeria monocytogenes, Neospora caninum, Toxoplasma gondii and Enzephalitozoon
cuniculi [48, 84–86]. All animals were immunohistochemically negative for Listeria monocyto-
genes, Neospora caninum and Toxoplasma gondii. Also, no intralesional protozoal structures

were identified within the lesions. This could either be explained by the fact that the mentioned

agents are not endemic in this area or that they are not present in the tissue any longer. Inter-

estingly, in bordering areas of northern Germany the prevalence for specific agents like Toxo-
plasma gondii or Encephalitozoon cuniculi in the red fox population is high [84, 86, 87]. This

might thus represent an interesting topic for further specific studies dealing with bacterial and

protozoal infections in wild predators and their potentially infected intermediate hosts in this

region. [84, 86, 87]

Another, non-infection-related mechanism causing non-suppurative encephalitis has

recently been described in the deceased captive polar bear Knut, where antibodies against

the N-methyl-D-aspartate (NMDA) receptor were demonstrated in the cerebrospinal fluid,

causing autoimmune encephalitis [88]. This phenomenon might also be the cause of some

types of encephalitis of unknown etiology in the investigated cases. However, further exami-

nations are required to determine possible non-viral causes of encephalitis in wild

carnivores.

Regarding the general health status of the animals examined in this study, the most preva-

lent findings were chronic interstitial nephritis, myocardial changes, skin lesions and findings
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in the gastrointestinal tract including the liver. Overall, these types of lesions excluding the

changes in the kidneys were characterised by a low degree of severity and must be considered

as incidental findings with no clinical significance at the time of investigation. Chronic inter-

stitial nephritis is known among wildlife species and often seen within domestic carnivores.

The etiology remains unclear in most cases and it would seem that protein-rich nutrition

possibly favours the condition. Moreover, acquired infectious (such as leptospirosis) or non-

infectious (such as autoimmune) diseases or congenital factors might be involved [45, 89,

90]. Mild bacterial or viral infections are primarily suspected of causing the inflammation.

Skin lesions appeared to be mostly related to minor traumatic injury with secondary bacterial

infection. Interestingly, detectable ectoparasitism was generally low. Only single animals dis-

played evidence of tick nymph infestation; single adult ticks and one animal showed a light

infestation of fleas. Gastrointestinal tract lesions were mild in most cases and presumably

related to parasitic infection. A surprisingly high number of stone martens displayed mild

hepatitis of unknown cause. Further investigations into the underlying cause might be of

interest in future studies.

In line with the “One-Health” notion, this study highlights the importance of periodical

investigations on the health status of wild animals living in close contact to humans and

domestic animals. The results provide an update on the health status of wild foxes, stone mar-

tens and raccoon dogs in Northern Germany and highlight the persistent risk of transmissible,

infectious zoonotic agents which might be spread among wild and domestic animals as well as

humans. The high number of etiologically undetermined encephalitis and inflammatory pro-

cesses in several cases underline the importance of further studies on the detection of novel

infectious diseases and immune-mediated inflammatory diseases.

Supporting information

S1 Table. Examined animals: Animal number, laboratory identification number, date of

necropsy, species, age (determined by teeth), gender, cause of death and main macroscopi-

cal and histological lesions.

(DOCX)

S2 Table. Overview of results of viral metagenomics performed on brain tissues from foxes

and a stone marten.

(DOCX)

Acknowledgments

The investigation was funded by the Ministry of Energy, Agriculture, the Environment and

Rural Affairs of Schleswig-Holstein and the German Hunting Union and partly supported by

the Niedersachsen-Research Network on Neuroinfectiology (N-RENNT) of the Ministry of

Science and Culture of Lower Saxony, Germany and by the COMPARE project. Funding was

also received from the European Union’s Horizon 2020 research and innovation program

COMPARE (grant agreement no. 643476). The authors wish to thank Bettina Buck, Petra Grü-
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25. Beineke A, Baumgärtner W, Wohlsein P. Cross-species transmission of canine distemper virus—an

update. One Health. 2015; 1:49–59. http://dx.doi.org/10.1016/j.onehlt.2015.09.002
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