171 research outputs found

    The relationship between N mineralization or microbial biomass N with micromorphological properties in beech forest soils with different texture and pH

    Get PDF
    To test relationships between net N-mineralization, organic matter and soil organisms, we combined micromorphology with laboratory incubation experiments over a soil gradient. Microbial biomass N generally increased with pH, and from sandy to loamy soil, but net N-mineralization showed the opposite, and was highest in acid, sandy soil. Twenty-two micromorphological characteristics were analyzed with principal component analysis. PC1 had high eigenvalue (0.70), and clearly separated fungi from earthworms, microarthropods and bacteria. PC2 was less important (0.15). Organic layer and sand content clearly correlated with the fungi-end of PC1, but pH and C-content of the Ah with the opposite. Microbial N also correlated with the earthworm-bacteria end, but net N-mineralization did not. Efficiency of N-mineralization per unit microbe even correlated with the fungi end of PC1, in both organic layer and mineral topsoil. The results support the hypothesis that high (or low) litter turnover and biological activity can be counteracted by high (or low) microbial N-demand

    Amendments with organic and industrial wastes stimulate soil formation in mine tailings as revealed by micromorphology

    Get PDF
    Mine tailings are inhospitable to plants and soil organisms, because of low pH and poor soil organic matter contents. Vegetation establishment requires a soil system capable of supporting the nutrient and water requirements of plants and associated organisms. The objective of this study was to understand the influence of added organic and industrial wastes to the formation of soils in degraded landscapes left behind by past mining activities. Specifically, we stimulated the build up of soil organic matter (SOM) and the accumulation of calcite in mine tailing deposits. We amended field experimental plots with pig manure (PM), sewage sludge (SS) in combination with blanket application of marble wastes (MW). Soil samples were collected for physical and chemical analyses, two years after the addition of industrial wastes. Three years after amendments, we took undisturbed samples for micromorphological analysis. Soil pH increased from 2.7 to 7.4 due to dissolution of calcite from MW amendment. The acidity in tailings and low rainfall in the study area precipitated the secondary calcite as infillings within the 0-4 cm layer. Total organic carbon (TOC) increased from 0.86 to 2.5 g TOC kg − 1 soil after 24 months since the application of amendments. The build up of SOM resulted to stable SOM-calcite complex as dense incomplete infillings mixed with secondary calcite, and cappings on calcite particles from MW addition. These SOM cappings provide water and nutrient to support initial seedling establishment in mine tailings. We attribute the granular structure of amended materials to soil organisms (e.g., earthworm activity) involved in the decomposition of plant materials. We suggest that any organic matter amendments to acidic mine tailing deposits must be combined with calcium carbonate-rich materials to accelerate the build up of SOM to accelerate the establishment of functional ecosystem characterized by, among others, the presence of healthy soils with granular microstructure

    The added value of biomarker analysis to the genesis of plaggic Anthrosols; the identification of stable fillings used for the production of plaggic manure

    Get PDF
    Plaggic Anthrosols are the result of historical forms of land management in cultural landscapes on chemically poor sandy substrates. Application of plaggic manure was responsible for the development of the plaggic horizons of these agricultural soils. Pollen diagrams reflect aspects of the environmental development but the interpretation of the pollen spectra is complicated due to the mix of the aeolian pollen influx of crop species and species in the surroundings, and of pollen occurring in the used stable fillings. Pollen diagrams and radiocarbon dates of plaggic Anthrosols suggested a development period of more than a millennium. Calluna is present in almost all the pollen spectra, indicating the presence of heath in the landscape during the whole period of soil development. Optically stimulated luminescence dating of the plaggic horizon made clear that the deposition of plaggic covers started in the 16th century and accelerated in the 18th century. The stable fillings, used for the production of plaggic manure and responsible for the rise of the soil surface, cannot be identified with pollen diagrams alone. Biomarker analyses provide more evidence about the sources of stable fillings. The oldest biomarker spectra of the plaggic horizons of three typical plaggic Anthrosols examined in this study were dominated by biomarkers of forest species such as Quercus and Betula while the spectra of middle part of the plaggic horizons were dominated by biomarkers of stem tissue of crop species such as Secale and Avena. Only the youngest spectra of the plaggic horizons were dominated by biomarkers of Calluna. This indicates that the use of heath sods as stable filling was most likely introduced very late in the development of the Anthrosols. Before the 19th century the mineral component in plaggic manure cannot be explained by the use of heath sods. We conclude that other sources of materials, containing mineral grains must have been responsible for the raise of the plaggic horizon

    Timing and sequence of vaccination against COVID-19 and influenza (TACTIC):a single-blind, placebo-controlled randomized clinical trial

    Get PDF
    Background: Novel mRNA-based vaccines have been used to protect against SARS-CoV-2, especially in vulnerable populations who also receive an annual influenza vaccination. The TACTIC study investigated potential immune interference between the mRNA COVID-19 booster vaccine and the quadrivalent influenza vaccine, and determined if concurrent administration would have effects on safety or immunogenicity. Methods: TACTIC was a single-blind, placebo-controlled randomized clinical trial conducted at the Radboud University Medical Centre, the Netherlands. Individuals ≥60 years, fully vaccinated against COVID-19 were eligible for participation and randomized into one of four study groups: 1) 0.5 ml influenza vaccination Vaxigrip Tetra followed by 0.3 ml BNT162b2 COVID-19 booster vaccination 21 days later, (2) COVID-19 booster vaccination followed by influenza vaccination, (3) influenza vaccination concurrent with the COVID-19 booster vaccination, and (4) COVID-19 booster vaccination only (reference group). Primary outcome was the geometric mean concentration (GMC) of IgG against the spike (S)-protein of the SARS-CoV-2 virus, 21 days after booster vaccination. We performed a non-inferiority analysis of concurrent administration compared to booster vaccines alone with a predefined non-inferiority margin of −0.3 on the log10-scale. Findings: 154 individuals participated from October, 4, 2021, until November, 5, 2021. Anti-S IgG GMCs for the co-administration and reference group were 1684 BAU/ml and 2435 BAU/ml, respectively. Concurrent vaccination did not meet the criteria for non-inferiority (estimate −0.1791, 95% CI −0.3680 to −0.009831) and antibodies showed significantly lower neutralization capacity compared to the reference group. Reported side-effects were mild and did not differ between study groups. Interpretation: Concurrent administration of both vaccines is safe, but the quantitative and functional antibody responses were marginally lower compared to booster vaccination alone. Lower protection against COVID-19 with concurrent administration of COVID-19 and influenza vaccination cannot be excluded, although additional larger studies would be required to confirm this. Trial registration number: EudraCT: 2021-002186-17 Funding: The study was supported by the ZonMw COVID-19 Programme.</p

    On the freezing of variables in random constraint satisfaction problems

    Full text link
    The set of solutions of random constraint satisfaction problems (zero energy groundstates of mean-field diluted spin glasses) undergoes several structural phase transitions as the amount of constraints is increased. This set first breaks down into a large number of well separated clusters. At the freezing transition, which is in general distinct from the clustering one, some variables (spins) take the same value in all solutions of a given cluster. In this paper we study the critical behavior around the freezing transition, which appears in the unfrozen phase as the divergence of the sizes of the rearrangements induced in response to the modification of a variable. The formalism is developed on generic constraint satisfaction problems and applied in particular to the random satisfiability of boolean formulas and to the coloring of random graphs. The computation is first performed in random tree ensembles, for which we underline a connection with percolation models and with the reconstruction problem of information theory. The validity of these results for the original random ensembles is then discussed in the framework of the cavity method.Comment: 32 pages, 7 figure

    Rectal Organoids Enable Personalized Treatment of Cystic Fibrosis

    Get PDF
    In vitro drug tests using patient-derived stem cell cultures offer opportunities to individually select efficacious treatments. Here, we provide a study that demonstrates that in vitro drug responses in rectal organoids from individual patients with cystic fibrosis (CF) correlate with changes in two in vivo therapeutic endpoints. We measured individual in vitro efficaciousness using a functional assay in rectum-derived organoids based on forskolininduced swelling and studied the correlation with in vivo effects. The in vitro organoid responses correlated with both change in pulmonary response and change in sweat chloride concentration. Receiver operating characteristic curves indicated good-toexcellent accuracy of the organoid-based test for defining clinical responses. This study indicates that an in vitro assay using stem cell cultures can prospectively select efficacious treatments for patients and suggests that biobanked stem cell resources can be used to tailor individual treatments in a cost-effective and patient-friendly manner

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men
    corecore