285 research outputs found

    Slant cues are processed with different latencies for the online control of movement

    Get PDF
    For the online control of movement, it is important to respond fast. The extent to which cues are effective in guiding our actions might therefore depend on how quickly they provide new information. We compared the latency to alter a movement when monocular and binocular cues indicated that the surface slant had changed. We found that subjects adjusted their movement in response to three types of information: information about the new slant from the monocular image, information about the new slant from binocular disparity, and information about the change in slant from the change in the monocular image. Responses to changes in the monocular image were approximately 40 ms faster than responses to a new slant estimate from binocular disparity and about 90 ms faster than responses to a new slant estimate from the monocular image. Considering these delays, adjustments of ongoing movements to changes in slant will usually be initiated by changes in the monocular image. The response will later be refined on the basis of combined binocular and monocular estimates of slant. © ARVO

    Euclid preparation. XXI. Intermediate-redshift contaminants in the search for z > 6 galaxies within the Euclid Deep Survey

    Full text link
    Context. The Euclid mission is expected to discover thousands of z > 6 galaxies in three deep fields, which together will cover a ∼50 deg2^{2} area. However, the limited number of Euclid bands (four) and the low availability of ancillary data could make the identification of z > 6 galaxies challenging. Aims. In this work we assess the degree of contamination by intermediate-redshift galaxies (z = 1–5.8) expected for z > 6 galaxies within the Euclid Deep Survey. Methods. This study is based on ∼176 000 real galaxies at z = 1–8 in a ∼0.7 deg2^{2} area selected from the UltraVISTA ultra-deep survey and ∼96 000 mock galaxies with 25.3 ≤ H < 27.0, which altogether cover the range of magnitudes to be probed in the Euclid Deep Survey. We simulate Euclid and ancillary photometry from fiducial 28-band photometry and fit spectral energy distributions to various combinations of these simulated data. Results. We demonstrate that identifying z > 6 galaxies with Euclid data alone will be very effective, with a z > 6 recovery of 91% (88%) for bright (faint) galaxies. For the UltraVISTA-like bright sample, the percentage of z = 1–5.8 contaminants amongst apparent z > 6 galaxies as observed with Euclid alone is 18%, which is reduced to 4% (13%) by including ultra-deep Rubin (Spitzer) photometry. Conversely, for the faint mock sample, the contamination fraction with Euclid alone is considerably higher at 39%, and minimised to 7% when including ultra-deep Rubin data. For UltraVISTA-like bright galaxies, we find that Euclid (IE_{E} − YE_{E}) > 2.8 and (YE_{E} − JE_{E})  6 galaxies, although these are applicable to only 54% of the contaminants as many have unconstrained (IE_{E} − YE_{E}) colours. In the best scenario, these cuts reduce the contamination fraction to 1% whilst preserving 81% of the fiducial z > 6 sample. For the faint mock sample, colour cuts are infeasible; we find instead that a 5σ detection threshold requirement in at least one of the Euclid near-infrared bands reduces the contamination fraction to 25%

    Euclid preparation:XXVI. the Euclid Morphology Challenge: Towards structural parameters for billions of galaxies

    Get PDF
    The various Euclid imaging surveys will become a reference for studies of galaxy morphology by delivering imaging over an unprecedented area of 15 000 square degrees with high spatial resolution. In order to understand the capabilities of measuring morphologies from Euclid-detected galaxies and to help implement measurements in the pipeline of the Organisational Unit MER of the Euclid Science Ground Segment, we have conducted the Euclid Morphology Challenge, which we present in two papers. While the companion paper focusses on the analysis of photometry, this paper assesses the accuracy of the parametric galaxy morphology measurements in imaging predicted from within the Euclid Wide Survey. We evaluate the performance of five state-of-the-art surface-brightness-fitting codes, DeepLeGATo, Galapagos-2, Morfometryka, ProFit and SourceXtractor++, on a sample of about 1.5 million simulated galaxies (350 000 above 5s) resembling reduced observations with the Euclid VIS and NIR instruments. The simulations include analytic Sérsic profiles with one and two components, as well as more realistic galaxies generated with neural networks. We find that, despite some code-specific differences, all methods tend to achieve reliable structural measurements (&lt; 10% scatter on ideal Sérsic simulations) down to an apparent magnitude of about IE = 23 in one component and IE = 21 in two components, which correspond to a signal-to-noise ratio of approximately 1 and 5, respectively. We also show that when tested on non-analytic profiles, the results are typically degraded by a factor of 3, driven by systematics. We conclude that the official Euclid Data Releases will deliver robust structural parameters for at least 400 million galaxies in the Euclid Wide Survey by the end of the mission. We find that a key factor for explaining the different behaviour of the codes at the faint end is the set of adopted priors for the various structural parameters.</p

    Protein disulfide-isomerase interacts with a substrate protein at all stages along its folding pathway

    Get PDF
    In contrast to molecular chaperones that couple protein folding to ATP hydrolysis, protein disulfide-isomerase (PDI) catalyzes protein folding coupled to formation of disulfide bonds (oxidative folding). However, we do not know how PDI distinguishes folded, partly-folded and unfolded protein substrates. As a model intermediate in an oxidative folding pathway, we prepared a two-disulfide mutant of basic pancreatic trypsin inhibitor (BPTI) and showed by NMR that it is partly-folded and highly dynamic. NMR studies show that it binds to PDI at the same site that binds peptide ligands, with rapid binding and dissociation kinetics; surface plasmon resonance shows its interaction with PDI has a Kd of ca. 10−5 M. For comparison, we characterized the interactions of PDI with native BPTI and fully-unfolded BPTI. Interestingly, PDI does bind native BPTI, but binding is quantitatively weaker than with partly-folded and unfolded BPTI. Hence PDI recognizes and binds substrates via permanently or transiently unfolded regions. This is the first study of PDI's interaction with a partly-folded protein, and the first to analyze this folding catalyst's changing interactions with substrates along an oxidative folding pathway. We have identified key features that make PDI an effective catalyst of oxidative protein folding – differential affinity, rapid ligand exchange and conformational flexibility

    Non-native hydrophobic interactions detected in unfolded apoflavodoxin by paramagnetic relaxation enhancement

    Get PDF
    Transient structures in unfolded proteins are important in elucidating the molecular details of initiation of protein folding. Recently, native and non-native secondary structure have been discovered in unfolded A. vinelandii flavodoxin. These structured elements transiently interact and subsequently form the ordered core of an off-pathway folding intermediate, which is extensively formed during folding of this α–β parallel protein. Here, site-directed spin-labelling and paramagnetic relaxation enhancement are used to investigate long-range interactions in unfolded apoflavodoxin. For this purpose, glutamine-48, which resides in a non-native α-helix of unfolded apoflavodoxin, is replaced by cysteine. This replacement enables covalent attachment of nitroxide spin-labels MTSL and CMTSL. Substitution of Gln-48 by Cys-48 destabilises native apoflavodoxin and reduces flexibility of the ordered regions in unfolded apoflavodoxin in 3.4 M GuHCl, because of increased hydrophobic interactions in the unfolded protein. Here, we report that in the study of the conformational and dynamic properties of unfolded proteins interpretation of spin-label data can be complicated. The covalently attached spin-label to Cys-48 (or Cys-69 of wild-type apoflavodoxin) perturbs the unfolded protein, because hydrophobic interactions occur between the label and hydrophobic patches of unfolded apoflavodoxin. Concomitant hydrophobic free energy changes of the unfolded protein (and possibly of the off-pathway intermediate) reduce the stability of native spin-labelled protein against unfolding. In addition, attachment of MTSL or CMTSL to Cys-48 induces the presence of distinct states in unfolded apoflavodoxin. Despite these difficulties, the spin-label data obtained here show that non-native contacts exist between transiently ordered structured elements in unfolded apoflavodoxin

    A novel genetic programming approach to the design of engine control systems for the voltage stabilisation of hybrid electric vehicle generator outputs

    No full text
    This paper describes a Genetic Programming based automatic design methodology applied to the maintenance of a stable generated electrical output from a series-hybrid vehi- cle generator set. The generator set comprises a 3-phase AC generator whose output is subsequently rectified to DC.The engine/generator combination receives its control input via an electronically actuated throttle, whose control integration is made more complex due to the significant system time delay. This time delay problem is usually addressed by model predictive design methods, which add computational complexity and rely as a necessity on accurate system and delay models. In order to eliminate this reliance, and achieve stable operation with disturbance rejection, a controller is designed via a Genetic Programming framework implemented directly in Matlab, and particularly, Simulink. the principal objective is to obtain a relatively simple controller for the time-delay system which doesn’t rely on computationally expensive structures, yet retains inherent disturabance rejection properties. A methodology is presented to automatically design control systems directly upon the block libraries available in Simulink to automatically evolve robust control structures
    • …
    corecore