422 research outputs found
A common theme in interaction of bacterial immunoglobulin-binding proteins with immunoglobulins illustrated in the equine system
The M protein of Streptococcus equi subsp. equi known as fibrinogen-binding protein (FgBP) is a cell wall-associated protein with antiphagocytic activity that binds IgG. Recombinant versions of the seven equine IgG subclasses were used to investigate the subclass specificity of FgBP. FgBP bound predominantly to equine IgG4 and IgG7, with little or no binding to the other subclasses. Competitive binding experiments revealed that FgBP could inhibit the binding of staphylococcal protein A and streptococcal protein G to both IgG4 and IgG7, implicating the Fc interdomain region in binding to FgBP. To identify which of the two IgG Fc domains contributed to the interaction with FgBP, we tested two human IgG1/IgA1 domain swap mutants and found that both domains are required for full binding, with the CH3 domain playing a critical role. The binding site for FgBP was further localized using recombinant equine IgG7 antibodies with single or double point mutations to residues lying at the CH2-CH3 interface. We found that interaction of FgBP with equine IgG4 and IgG7 was able to disrupt C1q binding and antibody-mediated activation of the classical complement pathway, demonstrating an effective means by which S. equi may evade the immune response. The mode of interaction of FgBP with IgG fits a common theme for bacterial Ig-binding proteins. Remarkably, for those interactions studied in detail, it emerges that all the Ig-binding proteins target the CH2-CH3 domain interface, regardless of specificity for IgG or IgA, streptococcal or staphylococcal origin, or host species (equine or human)
DNA Methylation of the ABO Promoter Underlies Loss of ABO Allelic Expression in a Significant Proportion of Leukemic Patients
Background: Loss of A, B and H antigens from the red blood cells of patients with myeloid malignancies is a frequent occurrence. Previously, we have reported alterations in ABH antigens on the red blood cells of 55% of patients with myeloid malignancies. Methodology/Principal Findings: To determine the underlying molecular mechanisms of this loss, we assessed ABO allelic expression in 21 patients with ABH antigen loss previously identified by flow cytometric analysis as well as an additional 7 patients detected with ABH antigen changes by serology. When assessing ABO mRNA allelic expression, 6/12 (50%) patients with ABH antigen loss detected by flow cytometry and 5/7 (71%) of the patients with ABH antigen loss detected by serology had a corresponding ABO mRNA allelic loss of expression. We examined the ABO locus for copy number and DNA methylation alterations in 21 patients, 11 with loss of expression of one or both ABO alleles, and 10 patients with no detectable allelic loss of ABO mRNA expression. No loss of heterozygosity (LOH) at the ABO locus was observed in these patients. However in 8/11 (73%) patients with loss of ABO allelic expression, the ABO promoter was methylated compared with 2/10 (20%) of patients with no ABO allelic expression loss (P = 0.03). Conclusions/Significance: We have found that loss of ABH antigens in patients with hematological malignancies is associated with a corresponding loss of ABO allelic expression in a significant proportion of patients. Loss of ABO allelic expression was strongly associated with DNA methylation of the ABO promoter.Tina Bianco-Miotto, Damian J. Hussey, Tanya K. Day, Denise S. O'Keefe and Alexander Dobrovi
Haplotypes of the bovine IgG2 heavy gamma chain in tick-resistant and tick-susceptible breeds of cattle
Bovines present contrasting, heritable phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus. Tick salivary glands produce IgG-binding proteins (IGBPs) as a mechanism for escaping from host antibodies that these ectoparasites ingest during blood meals. Allotypes that occur in the constant region of IgG may differ in their capacity to bind with tick IGBPs; this may be reflected by the distribution of distinct allotypes according to phenotypes of tick infestations. In order to test this hypothesis, we investigated the frequency of haplotypes of bovine IgG2 among tick-resistant and tick-susceptible breeds of bovines. Sequencing of the gene coding for the heavy chain of IgG2 from 114 tick-resistant (Bos taurus indicus, Nelore breed) and tick-susceptible (B. t. taurus, Holstein breed) bovines revealed SNPs that generated 13 different haplotypes, of which 11 were novel and 5 were exclusive of Holstein and 3 of Nelore breeds. Alignment and modeling of coded haplotypes for hinge regions of the bovine IgG2 showed that they differ in the distribution of polar and hydrophobic amino acids and in shape according to the distribution of these amino acids. We also found that there was an association between genotypes of the constant region of the IgG2 heavy chain with phenotypes of tick infestations. These findings open the possibility of investigating if certain IgG allotypes hinder the function of tick IGBPs. If so, they may be markers for breeding for resistance against tick infestations
Characterisation of epitopes of pan-IgG/anti-G3m(u) and anti-Fc monoclonal antibodies.
The characterisation of monoclonal antibodies (MAbs) and their epitopes is important prior to their application as molecular probes. In this study, Western blotting using IgG1 Fc and pFc' fragments was employed to screen seven MAbs before pepscan analysis to determine their reactivity to potentially linear epitopes. MAbs PNF69C, PNF110A, X1A11 and MAbs WC2, G7C, JD312, 1A1 detected epitopes within the C(H)3 and C(H)2 domains, respectively. However, only four MAbs showed pepscan profiles that highlighted likely target residues. In particular, MAbs PNF69C and PNF110A that have previously been characterised with pan-IgG and anti-G3m(u) specificity, detected the peptide motif 338-KAKGQPR-344 which was located within the N-terminal region of the C(H)3 domain. Furthermore the majority of residues were present in all four IgG subclasses. Consequently the peptide identified was consistent with the pan-IgG nature of these antibodies. By using PCImdad, a molecular display programme, this sequence was visualised as surface accessible, located in the C(H)2/C(H)3 inter-domain region and proximal to the residue arginine(435). It is speculated that this residue may be important for phenotypic expression of G3m(u) and specificity of these reagents. Pepscan analysis of MAbs G7C and JD312 (both pan-IgG) highlighted the core peptide sequence 290-KPREE-294, which was present in the C(H)2 domain and was common to all four IgG subclasses. PCImdad also showed this region to be highly accessible and was consistent with previous bioinformatic and autoimmune analysis of IgG. Overall these MAbs may serve as useful anti-IgG or anti-G3m(u) reagents and probes of immunoglobulin structure
- …
