4 research outputs found

    Robotically driven construction of buildings: Exploring on-demand building components production

    Get PDF
    Robotically Driven Construction of Buildings (RDCB) is an exploration into design to production solutions for robotically driven construction of buildings initiated by the faculties of Civil Engineering and Architecture, TU Delft and Architecture, TU Eindhoven and implemented 2014 within the 3TU Lighthouse framework. The aim of was to involve the disciplines of architecture, robotics, materials science, and structural design in order to integrate knowledge from the individual disciplines and develop new numerically controlled manufacturing techniques and building-design optimisation methods for adding creative value to buildings in a cost-effective and sustainable way.RDCB builds up on expertise developed at Hyperbody with respect to applications of robotics in architecture and this paper presents the contribution of the Robotic Building team from Hyperbody, Faculty of Architecture, TU Delft to the RDCB project. The contribution is in line with Europe’s aim to improve material and energy efficiency of buildings and efficiency of construction processes. Robotically driven construction and customised building materials have the potential to realise this in a cost-effective way and at the same time reduce accidents and health hazards for workers in the building sector. In order to achieve this RDCB is distributing materials as needed and where needed. This requires exploration of a variety of techniques and implies working with customised materials and techniques while finding the best methods of applying materials in the logic of specific force flows or thermal dissipation patterns.RDCB advances multi- and trans-disciplinary knowledge in robotically driven construction by designing and engineering new building systems for the on-demand production of customisable building components (Bier, 2014). The main consideration is that in architecture and building construction the factory of the future employs building materials and components that can be on site robotically processed and assembled

    Characteristic Contrast in Δfmin Maps of Organic Molecules Using Atomic Force Microscopy

    No full text
    Scanning tunneling microscopy and atomic force microscopy can provide detailed information about the geometric and electronic structure of molecules with submolecular spatial resolution. However, an essential capability to realize the full potential of these techniques for chemical applications is missing from the scanning probe toolbox: chemical recognition of organic molecules. Here, we show that maps of the minima of frequency shift-distance curves extracted from 3D data cubes contain characteristic contrast. A detailed theoretical analysis based on density functional theory and molecular mechanics shows that these features are characteristic for the investigated species. Structurally similar but chemically distinct molecules yield significantly different features. We find that the van der Waals and Pauli interaction, together with the specific adsorption geometry of a given molecule on the surface, accounts for the observed contrast

    Characteristic Contrast in Δ<i>f</i><sub>min</sub> Maps of Organic Molecules Using Atomic Force Microscopy

    No full text
    Scanning tunneling microscopy and atomic force microscopy can provide detailed information about the geometric and electronic structure of molecules with submolecular spatial resolution. However, an essential capability to realize the full potential of these techniques for chemical applications is missing from the scanning probe toolbox: chemical recognition of organic molecules. Here, we show that maps of the minima of frequency shift–distance curves extracted from 3D data cubes contain characteristic contrast. A detailed theoretical analysis based on density functional theory and molecular mechanics shows that these features are characteristic for the investigated species. Structurally similar but chemically distinct molecules yield significantly different features. We find that the van der Waals and Pauli interaction, together with the specific adsorption geometry of a given molecule on the surface, accounts for the observed contrast

    Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production

    No full text
    The increase in human consumption of plant and animal oils has led to the rise in waste cooking oil (WCO) production. Instead of disposing the used cooking oil as waste, recent technological advance has enabled the use of WCO as a sustainable feedstock for biofuels production, thereby maximising the value of biowastes via energy recovery while concomitantly solving the disposal issue. The current regulatory frameworks for WCO collection and recycling practices imposed by major WCO producing countries are reviewed, followed by the overview of the progress in biodiesel conversion techniques, along with novel methods to improve the feasibility for upscaling. The factors which influence the efficiency of the reactions such as properties of feedstock, heterogenous catalytic processes, cost effectiveness and selectivity of reaction product are discussed. Ultrasonic-assisted transesterification is found to be the least energy intensive method for producing biodiesel. The production of bio-jet fuels from WCO, while scarce, provide diversity in waste utilisation if problems such as carbon chain length, requirements of bio-jet fuel properties, extreme reaction conditions and effectiveness of selected catalyst-support system can be solved. Technoeconomic studies revealed that WCO biofuels is financially viable with benefit of mitigating carbon emissions, provided that the price gap between the produced fuel and commercial fuels, sufficient supply of WCO and variation in the oil properties are addressed. This review shows that WCO is a biowaste with high potential for advanced transportation fuel production for ground and aviation industries. The advancement in fuel production technology and relevant policies would accelerate the application of sustainable WCO biofuels.N/
    corecore