1,053 research outputs found

    A systematic review on intra-abdominal pressure in severely burned patients

    Get PDF
    Objective Intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) are complications that may occur in severely burned patients. Evidenced based medicine for these patients is in its early development. The aim of this study was to provide an overview of literature regarding IAH and ACS in severely burned patients. Methods A systematic search was performed in Cochrane Central Register of Controlled Trials, PubMed, Embase, Web of Science and CINAHL on October 1, 2012. These databases were searched on 'burn', 'intra-abdominal hypertension', 'abdominal compartment syndrome', synonyms and abbreviations. Studies reporting original data on mortality, abdominal decompression or abdominal pressure related complications were included. Results Fifty publications met the criteria, reporting 1616 patients. The prevalence of ACS and IAH in severely burned patients is 4.1-16.6% and 64.7-74.5%, respectively. The mean mortality rate for ACS in burn patients is 74.8%. The use of plasma and hypertonic lactated resuscitation may prevent IAH or ACS. Despite colloids decrease resuscitation volume needs, no benefit in preventing IAH was proven. Escharotomy, peritoneal catheter drainage, and decompression laparotomy are effective intra-abdominal pressure (IAP) diminishing treatments in burn patients. Markers for IAP-related organ damage might be superior to IAP measurement itself. Conclusion ACS and IAH are frequently seen devastating complications in already severely injured burn patients. Prevention is challenging but can be achieved by improving fluid resuscitation strategies. Surgical decompression measures are effective and often unavoidable. Timing is essential since decompression should prevent progression to ACS rather than limit its effects. Prognosis of ACS remains poor, but options for care improvement are available in literature

    Dusty tails of evaporating exoplanets. II. Physical modelling of the KIC 12557548b light curve

    Get PDF
    Evaporating rocky exoplanets, such as KIC 12557548b, eject large amounts of dust grains, which can trail the planet in a comet-like tail. When such objects occult their host star, the resulting transit signal contains information about the dust in the tail. We aim to use the detailed shape of the Kepler light curve of KIC 12557548b to constrain the size and composition of the dust grains that make up the tail, as well as the mass loss rate of the planet. Using a self-consistent numerical model of the dust dynamics and sublimation, we calculate the shape of the tail by following dust grains from their ejection from the planet to their destruction due to sublimation. From this dust cloud shape, we generate synthetic light curves (incorporating the effects of extinction and angle-dependent scattering), which are then compared with the phase-folded Kepler light curve. We explore the free-parameter space thoroughly using a Markov chain Monte Carlo method. Our physics-based model is capable of reproducing the observed light curve in detail. Good fits are found for initial grain sizes between 0.2 and 5.6 micron and dust mass loss rates of 0.6 to 15.6 M_earth/Gyr (2-sigma ranges). We find that only certain combinations of material parameters yield the correct tail length. These constraints are consistent with dust made of corundum (Al2O3), but do not agree with a range of carbonaceous, silicate, or iron compositions. Using a detailed, physically motivated model, it is possible to constrain the composition of the dust in the tails of evaporating rocky exoplanets. This provides a unique opportunity to probe to interior composition of the smallest known exoplanets.Comment: 18 pages, 11 figures, A&A accepte

    Filaments in observed and mock galaxy catalogues

    Get PDF
    Context. The main feature of the spatial large-scale galaxy distribution is an intricate network of galaxy filaments. Although many attempts have been made to quantify this network, there is no unique and satisfactory recipe for that yet. Aims. The present paper compares the filaments in the real data and in the numerical models, to see if our best models reproduce statistically the filamentary network of galaxies. Methods. We apply an object point process with interactions (the Bisous process) to trace and describe the filamentary network both in the observed samples (the 2dFGRS catalogue) and in the numerical models that have been prepared to mimic the data.We compare the networks. Results. We find that the properties of filaments in numerical models (mock samples) have a large variance. A few mock samples display filaments that resemble the observed filaments, but usually the model filaments are much shorter and do not form an extended network. Conclusions. We conclude that although we can build numerical models that are similar to observations in many respects, they may fail yet to explain the filamentary structure seen in the data. The Bisous-built filaments are a good test for such a structure.Comment: 13 pages, accepted for publication in Astronomy and Astrophysic

    Luminosity- and morphology-dependent clustering of galaxies

    Get PDF
    How does the clustering of galaxies depend on their inner properties like morphological type and luminosity? We address this question in the mathematical framework of marked point processes and clarify the notion of luminosity and morphological segregation. A number of test quantities such as conditional mark-weighted two-point correlation functions are introduced. These descriptors allow for a scale-dependent analysis of luminosity and morphology segregation. Moreover, they break the degeneracy between an inhomogeneous fractal point set and actual present luminosity segregation. Using the Southern Sky Redshift Survey~2 (da Costa et al. 1998, SSRS2) we find both luminosity and morphological segregation at a high level of significance, confirming claims by previous works using these data (Benoist et al. 1996, Willmer et al. 1998). Specifically, the average luminosity and the fluctuations in the luminosity of pairs of galaxies are enhanced out to separations of 15Mpc/h. On scales smaller than 3Mpc/h the luminosities on galaxy pairs show a tight correlation. A comparison with the random-field model indicates that galaxy luminosities depend on the spatial distribution and galaxy-galaxy interactions. Early-type galaxies are also more strongly correlated, indicating morphological segregation. The galaxies in the PSCz catalog (Saunders et al. 2000) do not show significant luminosity segregation. This again illustrates that mainly early-type galaxies contribute to luminosity segregation. However, based on several independent investigations we show that the observed luminosity segregation can not be explained by the morphology-density relation alone.Comment: aastex, emulateapj5, 20 pages, 13 figures, several clarifying comments added, ApJ accepte
    corecore