1,287 research outputs found

    Family size and intergenerational social mobility during the fertility transition: evidence of resource dilution from the city of Antwerp in nineteenth century Belgium

    Get PDF
    It has been argued in sociology, economics, and evolutionary anthropology that family size limitation enhances the intergenerational upward mobility chances in modernized societies. If parents have a large flock, family resources get diluted and intergenerational mobility is bound to head downwards. Yet, the empirical record supporting this resource dilution hypothesis is limited. This article investigates the empirical association between family size limitation and intergenerational mobility in an urban, late nineteenth century population in Western Europe. It uses life course data from the Belgian city of Antwerp between 1846 and 1920. Findings are consistent with the resource dilution hypothesis: after controlling for confounding factors, people with many children were more likely to end up in the lower classes. Yet, family size limitation was effective as a defensive rather than an offensive strategy: it prevented the next generation from going down rather than helping them to climb up the social ladder. Also, family size appears to have been particularly relevant for the middle classes. Implications for demographic transition theory are discussed

    Chimpanzees use social information to acquire a skill they fail to innovate

    Get PDF
    E.J.C.v.L. was funded by the European Union under European Research Council Starting Grant no. 101042961—CULT_ORIGINS.Cumulative cultural evolution has been claimed to be a uniquely human phenomenon pivotal to the biological success of our species. One plausible condition for cumulative cultural evolution to emerge is individuals’ ability to use social learning to acquire know-how that they cannot easily innovate by themselves. It has been suggested that chimpanzees may be capable of such know-how social learning, but this assertion remains largely untested. Here we show that chimpanzees use social learning to acquire a skill that they failed to independently innovate. By teaching chimpanzees how to solve a sequential task (one chimpanzee in each of the two tested groups, n = 66) and using network-based diffusion analysis, we found that 14 naive chimpanzees learned to operate a puzzle box that they failed to operate during the preceding three months of exposure to all necessary materials. In conjunction, we present evidence for the hypothesis that social learning in chimpanzees is necessary and sufficient to acquire a new, complex skill after the initial innovation.Peer reviewe

    Feeding Immunity: Physiological and Behavioral Responses to Infection and Resource Limitation.

    Get PDF
    Resources are a core currency of species interactions and ecology in general (e.g., think of food webs or competition). Within parasite-infected hosts, resources are divided among the competing demands of host immunity and growth as well as parasite reproduction and growth. Effects of resources on immune responses are increasingly understood at the cellular level (e.g., metabolic predictors of effector function), but there has been limited consideration of how these effects scale up to affect individual energetic regimes (e.g., allocation trade-offs), susceptibility to infection, and feeding behavior (e.g., responses to local resource quality and quantity). We experimentally rewilded laboratory mice (strain C57BL/6) in semi-natural enclosures to investigate the effects of dietary protein and gastrointestinal nematode (Trichuris muris) infection on individual-level immunity, activity, and behavior. The scale and realism of this field experiment, as well as the multiple physiological assays developed for laboratory mice, enabled us to detect costs, trade-offs, and potential compensatory mechanisms that mice employ to battle infection under different resource conditions. We found that mice on a low-protein diet spent more time feeding, which led to higher body fat stores (i.e., concentration of a satiety hormone, leptin) and altered metabolite profiles, but which did not fully compensate for the effects of poor nutrition on albumin or immune defenses. Specifically, immune defenses measured as interleukin 13 (IL13) (a primary cytokine coordinating defense against T. muris) and as T. muris-specific IgG1 titers were lower in mice on the low-protein diet. However, these reduced defenses did not result in higher worm counts in mice with poorer diets. The lab mice, living outside for the first time in thousands of generations, also consumed at least 26 wild plant species occurring in the enclosures, and DNA metabarcoding revealed that the consumption of different wild foods may be associated with differences in leptin concentrations. When individual foraging behavior was accounted for, worm infection significantly reduced rates of host weight gain. Housing laboratory mice in outdoor enclosures provided new insights into the resource costs of immune defense to helminth infection and how hosts modify their behavior to compensate for those costs

    VOEvent Standard for Fast Radio Bursts

    Full text link
    Fast radio bursts are a new class of transient radio phenomena currently detected as millisecond radio pulses with very high dispersion measures. As new radio surveys begin searching for FRBs a large population is expected to be detected in real-time, triggering a range of multi-wavelength and multi-messenger telescopes to search for repeating bursts and/or associated emission. Here we propose a method for disseminating FRB triggers using Virtual Observatory Events (VOEvents). This format was developed and is used successfully for transient alerts across the electromagnetic spectrum and for multi-messenger signals such as gravitational waves. In this paper we outline a proposed VOEvent standard for FRBs that includes the essential parameters of the event and where these parameters should be specified within the structure of the event. An additional advantage to the use of VOEvents for FRBs is that the events can automatically be ingested into the FRB Catalogue (FRBCAT) enabling real-time updates for public use. We welcome feedback from the community on the proposed standard outlined below and encourage those interested to join the nascent working group forming around this topic.Comment: 11 pages, 2 figures, parameter definition table in appendi

    Holocene vegetation, fire and land use dynamics at Lake Svityaz, an agriculturally marginal site in northwestern Ukraine

    Get PDF
    Observing natural vegetation dynamics over the entire Holocene is difficult in Central Europe, due to pervasive and increasing human disturbance since the Neolithic. One strategy to minimize this limitation is to select a study site in an area that is marginal for agricultural activity. Here, we present a new sediment record from Lake Svityaz in northwestern Ukraine. We have reconstructed regional and local vegetation and fire dynamics since the Late Glacial using pollen, spores, macrofossils and charcoal. Boreal forest composed of Pinus sylvestris and Betula with continental Larix decidua and Pinus cembra established in the region around 13,450 cal BP, replacing an open, steppic landscape. The first temperate tree to expand was Ulmus at 11,800 cal BP, followed by Quercus, Fraxinus excelsior, Tilia and Corylus ca. 1,000 years later. Fire activity was highest during the Early Holocene, when summer solar insolation reached its maximum. Carpinus betulus and Fagus sylvatica established at ca. 6,000 cal BP, coinciding with the first indicators of agricultural activity in the region and a transient climatic shift to cooler and moister conditions. Human impact on the vegetation remained initially very low, only increasing during the Bronze Age, at ca. 3,400 cal BP. Large-scale forest openings and the establishment of the present-day cultural landscape occurred only during the past 500 years. The persistence of highly diverse mixed forest under absent or low anthropogenic disturbance until the Early Middle Ages corroborates the role of human impact in the impoverishment of temperate forests elsewhere in Central Europe. The preservation or reestablishment of such diverse forests may mitigate future climate change impacts, specifically by lowering fire risk under warmer and drier conditions

    Chimpanzees behave prosocially in a group-specific manner

    Get PDF
    Funding: EJCvL was funded by a Postdoctoral Fellowship awarded by the Research Foundation Flanders (FWO) and an ERC-Synergy Grant (no. 609819) awarded to JC.Chimpanzees act cooperatively in the wild, but whether they afford benefits to others, and whether their tendency to act prosocially varies across communities, is unclear. Here, we show that chimpanzees from neighboring communities provide valuable resources to group members at personal cost, and that the magnitude of their prosocial behavior is group specific. Provided with a resource-donation experiment allowing free (partner) choice, we observed an increase in prosocial acts across the study period in most of the chimpanzees. When group members could profit (test condition), chimpanzees provided resources more frequently and for longer durations than when their acts produced inaccessible resources (control condition). Strikingly, chimpanzees’ prosocial behavior was group specific, with more socially tolerant groups acting more prosocially. We conclude that chimpanzees may purposely behave prosocially toward group members, and that the notion of group-specific sociality in nonhuman animals should crucially inform discussions on the evolution of prosocial behavior.Publisher PDFPeer reviewe

    Feeding immunity: Physiological and Behavioral responses to infection and resource limitation

    Get PDF
    Resources are a core currency of species interactions and ecology in general (e.g., think of food webs or competition). Within parasite-infected hosts, resources are divided among the competing demands of host immunity and growth as well as parasite reproduction and growth. Effects of resources on immune responses are increasingly understood at the cellular level (e.g., metabolic predictors of effector function), but there has been limited consideration of how these effects scale up to affect individual energetic regimes (e.g., allocation trade-offs), susceptibility to infection, and feeding behavior (e.g., responses to local resource quality and quantity). We experimentally rewilded laboratory mice (strain C57BL/6) in semi-natural enclosures to investigate the effects of dietary protein and gastrointestinal nematode (Trichuris muris) infection on individual-level immunity, activity, and behavior. The scale and realism of this field experiment, as well as the multiple physiological assays developed for laboratory mice, enabled us to detect costs, trade-offs, and potential compensatory mechanisms that mice employ to battle infection under different resource conditions. We found that mice on a low-protein diet spent more time feeding, which led to higher body fat stores (i.e., concentration of a satiety hormone, leptin) and altered metabolite profiles, but which did not fully compensate for the effects of poor nutrition on albumin or immune defenses. Specifically, immune defenses measured as interleukin 13 (IL13) (a primary cytokine coordinating defense against T. muris) and as T. muris-specific IgG1 titers were lower in mice on the low-protein diet. However, these reduced defenses did not result in higher worm counts in mice with poorer diets. The lab mice, living outside for the first time in thousands of generations, also consumed at least 26 wild plant species occurring in the enclosures, and DNA metabarcoding revealed that the consumption of different wild foods may be associated with differences in leptin concentrations. When individual foraging behavior was accounted for, worm infection significantly reduced rates of host weight gain. Housing laboratory mice in outdoor enclosures provided new insights into the resource costs of immune defense to helminth infection and how hosts modify their behavior to compensate for those costs

    Moving towards grapevine genotypes better adapted to abiotic constraints

    Get PDF
    Vitis spp., both in their cultivated and wild forms, have been growing in a large diversity of environments for thousands of years. As a result, they have developed many adaptive mechanisms controlled by a range of regulatory processes. The cultivated species, Vitis vinifera, is quite well adapted to semi-arid conditions and its cultivation can be used to produce crops on marginal lands. However, this is threatened by climate change, which is associated with increased temperature and CO2 atmospheric content, changes in water availability and an increased likelihood of extreme events, such as heat waves and early spring frosts. Indirect effects of climate change on solar radiation and soil minerals are also expected. Consequently, cultivated grapevines will presumably face more abiotic constraints occurring concomitantly or successively over one or more growing cycles. In addition to climate change, worldwide viticulture must reduce the use of pesticides. Adapting to climate change and reducing pesticide use are challenging, and increase the need to create new grapevine varieties that are more resistant to diseases and better adapted to abiotic constraints. For this purpose, the adaptive mechanisms of wild and cultivated Vitis spp. must be exploited. While major advances have already been made in exploiting wild alleles for disease resistance, the polygenic nature of adaptation to abiotic factors has slowed down research progress. To tackle this limitation, ambitious integrative strategies need to be undertaken from collection and characterization of genetic resources, investigations on genetic architecture and identification of underlying genes (including those involved in epigenetic regulation), to the implementation of new breeding technologies and the development of genomic selection. An update on the state-of-the-art regarding these aspects is presented

    Feeding immunity: Physiological and Behavioral responses to infection and resource limitation

    Get PDF
    Resources are a core currency of species interactions and ecology in general (e.g., think of food webs or competition). Within parasite-infected hosts, resources are divided among the competing demands of host immunity and growth as well as parasite reproduction and growth. Effects of resources on immune responses are increasingly understood at the cellular level (e.g., metabolic predictors of effector function), but there has been limited consideration of how these effects scale up to affect individual energetic regimes (e.g., allocation trade-offs), susceptibility to infection, and feeding behavior (e.g., responses to local resource quality and quantity). We experimentally rewilded laboratory mice (strain C57BL/6) in semi-natural enclosures to investigate the effects of dietary protein and gastrointestinal nematode (Trichuris muris) infection on individual-level immunity, activity, and behavior. The scale and realism of this field experiment, as well as the multiple physiological assays developed for laboratory mice, enabled us to detect costs, trade-offs, and potential compensatory mechanisms that mice employ to battle infection under different resource conditions. We found that mice on a low-protein diet spent more time feeding, which led to higher body fat stores (i.e., concentration of a satiety hormone, leptin) and altered metabolite profiles, but which did not fully compensate for the effects of poor nutrition on albumin or immune defenses. Specifically, immune defenses measured as interleukin 13 (IL13) (a primary cytokine coordinating defense against T. muris) and as T. muris-specific IgG1 titers were lower in mice on the low-protein diet. However, these reduced defenses did not result in higher worm counts in mice with poorer diets. The lab mice, living outside for the first time in thousands of generations, also consumed at least 26 wild plant species occurring in the enclosures, and DNA metabarcoding revealed that the consumption of different wild foods may be associated with differences in leptin concentrations. When individual foraging behavior was accounted for, worm infection significantly reduced rates of host weight gain. Housing laboratory mice in outdoor enclosures provided new insights into the resource costs of immune defense to helminth infection and how hosts modify their behavior to compensate for those costs
    • …
    corecore