868 research outputs found

    Fluctuating "order parameter" for a quantum chaotic system with partially broken time-reversal symmetry

    Full text link
    The functional defined as the squared modulus of the spatial average of the wave function squared, plays the role of an ``order parameter'' for the transition between Hamiltonian ensembles with orthogonal and unitary symmetry. Upon breaking time-reversal symmetry, the order parameter crosses over from one to zero. We compute its distribution in the crossover regime and find that it has large fluctuations around the ensemble average. These fluctuations imply long-range spatial correlations in the eigenfunction and non-Gaussian perturbations of eigenvalues, in precise agreement with results by Fal'ko and Efetov and by Taniguchi, Hashimoto, Simons, and Altshuler. As a third implication of the order-parameter fluctuations we find correlations in the response of an eigenvalue to independent perturbations of the system.Comment: 4 pages, REVTeX-3.0, 1 figure. Reference added to Y. V. Fyodorov and A. D. Mirlin, Phys. Rev. B 51, 13403 (1995

    Thermopower of Single-Channel Disordered and Chaotic Conductors

    Get PDF
    We show (analytically and by numerical simulation) that the zero-temperature limit of the distribution of the thermopower S of a one-dimensional disordered wire in the localized regime is a Lorentzian, with a disorder-independent width of 4 pi^3 k_B^2 T/3e\Delta (where T is the temperature and \Delta the mean level spacing). Upon raising the temperature the distribution crosses over to an exponential form exp(-2|S|eT/\Delta). We also consider the case of a chaotic quantum dot with two single-channel ballistic point contacts. The distribution of S then has a cusp at S=0 and a tail |S|^{-1-\beta} log|S| for large S (with \beta=1,2 depending on the presence or absence of time-reversal symmetry).Comment: To be published in Superlattices and Microstructures, special issue on the occasion of Rolf Landauer's 70th birthda

    Distribution of parametric conductance derivatives of a quantum dot

    Get PDF
    The conductance G of a quantum dot with single-mode ballistic point contacts depends sensitively on external parameters X, such as gate voltage and magnetic field. We calculate the joint distribution of G and dG/dX by relating it to the distribution of the Wigner-Smith time-delay matrix of a chaotic system. The distribution of dG/dX has a singularity at zero and algebraic tails. While G and dG/dX are correlated, the ratio of dG/dX and G(1−G)\sqrt{G(1-G)} is independent of G. Coulomb interactions change the distribution of dG/dX, by inducing a transition from the grand-canonical to the canonical ensemble. All these predictions can be tested in semiconductor microstructures or microwave cavities.Comment: 4 pages, RevTeX, 3 figure

    The Thermopower of Quantum Chaos

    Full text link
    The thermovoltage of a chaotic quantum dot is measured using a current heating technique. The fluctuations in the thermopower as a function of magnetic field and dot shape display a non-Gaussian distribution, in agreement with simulations using Random Matrix Theory. We observe no contributions from weak localization or short trajectories in the thermopower.Comment: 4 pages, 3 figures, corrected: accidently omitted author in the Authors list, here (not in the article

    Conditions for Adiabatic Spin Transport in Disordered Systems

    Get PDF
    We address the controversy concerning the necessary conditions for the observation of Berry phases in disordered mesoscopic conductors. For this purpose we calculate the spin-dependent conductance of disordered two-dimensional structures in the presence of inhomogeneous magnetic fields. Our numerical results show that for both, the overall conductance and quantum corrections, the relevant parameter defining adiabatic spin transport scales with the square root of the number of scattering events, in generalization of Stern's original proposal [Phys. Rev. Lett. 68, 1022 (1992)]. This could hinder a clear-cut experimental observation of Berry phase effects in diffusive metallic rings.Comment: 5 pages, 4 figures. To appear in Phys. Rev. B (Rapid Communications

    Berry phase and adiabaticity of a spin diffusing in a non-uniform magnetic field

    Get PDF
    An electron spin moving adiabatically in a strong, spatially non-uniform magnetic field accumulates a geometric phase or Berry phase, which might be observable as a conductance oscillation in a mesoscopic ring. Two contradicting theories exist for how strong the magnetic field should be to ensure adiabaticity if the motion is diffusive. To resolve this controversy, we study the effect of a non-uniform magnetic field on the spin polarization and on the weak-localization effect. The diffusion equation for the Cooperon is solved exactly. Adiabaticity requires that the spin-precession time is short compared to the elastic scattering time - it is not sufficient that it is short compared to the diffusion time around the ring. This strong condition severely complicates the experimental observation.Comment: 16 pages REVTEX, including 3 figure
    • …
    corecore