Berry phase and adiabaticity of a spin diffusing in a nonuniform magnetic field

S A van Langen ${ }^{*}$ and H P A Knops
Instituut Lorentz Leiden Unversity, P O Box 95062300 RA Leiden, The Netherlands
J C J Paasschens
Instituut Lorentz Leiden University, P O Box 9506, 2300 RA Leiden, The Netherlands and Phulps Research Laboratorles, 5656 AA Eundhoven, The Netherlands
C W J Beenakkeı
Instituut Lorentz, Leiden University, P O Box 95062300 RA Leiden, The Netherlands
(Recelved 13 March 1998)

Abstract

An electron spin moving adiabatically in a strong, spatially nonuniform magnetic field accumulates a geo metric phase or Berry phase, which might be observable as a conductance oscillation in a mesoscopic ring Two contradictung theories exist for how strong the magnetic field should be to ensure adiabaticity if the motion is diffusive To resolve this controversy, we study the effect of a nonumiform magnetic field on the spin polarization and on the weak-localization effect The diffusion equation for the Cooperon is solved exactly Adiabaticity requires that the spin-precession time is short compared to the elastic scattering tume-it is not sufficient that it is short compared to the diffusion time around the ring This strong condition severely complicates the expermental observation [S0163-1829(99)10103-6]

I. INTRODUCTION

The adıabatic theorem of quantum mechanics implies that the final state of a particle that moves slowly along a closed path is identical to the initial eigenstate - up to a phase factor The Berry phase is a time-independent contribution to this phase, depending only on the geometry of the path ${ }^{1} \mathrm{~A}$ simple example is a spin- $1 / 2$ in a 1 otating magnetic field \mathbf{B}, where the Berry phase equals half the solid angle swept by B It was proposed to measure the Berry phase in the conductance G of a mesoscopic ring in a spatially rotating magnetic field ${ }^{23}$ Oscillations of G as a function of the swept solid angle were piedicted, similar to the Aharonov-Bohm oscullations as a function of the enclosed flux ${ }^{4}$

An important practical difference between the two effects is that the Aharonov-Bohm oscillations exist at arbitiarily small magnetic fields, whereas for the oscillations due to the Berry phase the magnetic field should be sufficiently strong to allow the spin to adrabatically follow the changing diection Generally speaking, adiabaticity requies that the piecession frequency ω_{B} is large compared to the reciprocal of the characteristic time scale t_{c} on which \mathbf{B} changes direction We know that $\omega_{\mathrm{B}}=g \mu_{\mathrm{B}} B / 2 \hbar$, with g the Landé factor and μ_{B} the Bohr magneton The question is, what is $t_{\mathrm{c}}{ }^{9}$ In a ballistic ring there is only one candidate, the cucumference L of the ing divided by the Fermi velocity v (For simplicity we assume that L is also the scale on which the field dinection changes) In a diffusive ing theie are two candidates the elastic scattering time τ and the diffusion time τ_{d} around the ring They differ by a factor $\tau_{\mathrm{d}} / \tau \simeq(L / /)^{2}$, where $=v \tau$ is the mean fiee path Since, by definition, $L \gtrdot 6 \mathrm{in}$ a diffusive system, the two time scales are far apait Which of the two tome scales is the relevant one is still under debate ${ }^{5}$

Stern's onginal proposal ${ }^{3}$ was that

$$
\begin{equation*}
\omega_{\mathrm{B}} \gg \frac{1}{\tau} \tag{array}
\end{equation*}
$$

is necessary to observe the Berry-phase oscillations For realistic values of g this requires magnetic fields in the quantum Hall regime, outside the range of validity of the semiclassical theory We call Eq (11) the "pessimistic criterion '" In a later work, ${ }^{6}$ Loss, Schoeller, and Goldbart (LSG) concluded that adiabaticity is reached already at much weaker magnetic fields, when

$$
\begin{equation*}
\omega_{\mathrm{B}} \geqslant \frac{1}{\tau_{\mathrm{d}}} \simeq \frac{1}{\tau}\left(\frac{/}{L}\right)^{2} \tag{12}
\end{equation*}
$$

This "optımistic criterion' has motivated experımentalists to search for the Berry-phase oscillations in disordered conductors, ${ }^{7}$ and was invoked in a recent study of the conductivity of mesoscopic ferromagnets ${ }^{8}$ In this paper, we reexamine the semiclassical theory of LSG to resolve the controversy

The Berry-phase oscillations in the conductance result from a periodic modulation of the weak-localization correction, and require the solution of a diffusion equation for the Cooperon propagator To solve this problem we need to considel the coupled dynamics of four spin degrees of freedom (The Cooperon has four spin indices) To gain insight we first examine in Sec Π the simplei problem of the dynamics of a single spin variable, by studying the randomization of a spın-polarızed election gas by a nonunıform magnetıc field We stait at the level of the Boltzmann equation and then make the diffusion approximation We show how the diffusion equation can be solved exactly for the first two moments of the polarization The same procedure is used in Sec III to arrive at a diffusion equation for the Cooperon This equation coincides with the equation derived by LSG in the

FIG 1 Schematic drawing of a two dimensional electron gas in the spatially rotating magnetic field of $\mathrm{Eq}(21)$, with $f=1$
weak-field regıme $\omega_{\mathrm{B}} \tau \ll 1$, but is different in the strong-field regime $\omega_{\mathrm{B}} \tau \gtrsim 1$ We present an exact solution for the weaklocalization conection and compare with the findings of LSG

Our conclusion both for the polarization and for the weaklocalization correction is that adiabaticity requires $\omega_{\mathrm{B}} \tau \geqslant 1$ Regrettably, the pessimistic criteion (11) is correct, in agreement with Stern's onginal conclusion The optumistic cıiterion (12) advocated by LSG tums out to be the criterion for maximal 1 andomization of the spın by the magnetic field, and not the citerion for adiabaticity

II. SPIN-RESOLVED TRANSMISSION

A. Formulation of the problem

Consider a conductor in a magnetic field B, containing a disoidered segment (length L, mean fiee path \measuredangle at Fermı velocity v) in which the magnetic field changes its direction An electron at the Fermi level with spin up (relative to the local magnetic field) is mjected at one end and reaches the other end What is the probability that its spin is up?

For simplicity we take for the conductor a twodimensional electron gas (in the $x-y$ plane, with the disordered region between $x=0$ and $x=L$), and we gnore the curvature of the electron trajectories by the Lorentz force The problem becomes effectively one-dimensional by assumng that \mathbf{B} depends on x only We choose a rotation of \mathbf{B} in the $x-y$ plane, according to

$$
\begin{align*}
\mathbf{B}(x, y, z & =0) \\
& =\left(B \sin \eta \cos \frac{2 \pi f x}{L}, B \sin \eta \sin \frac{2 \pi f x}{L}, B \cos \eta\right), \tag{21}
\end{align*}
$$

with η and f arbitrary parameters The geometry is sketched in Fig 1 We treat the orbital motion semiclassically, within the framework of the Boltzmann equation (This is justified if the Fermı wavelength is much smaller than ℓ) The spin dynamics requires a fully quantum mechanical treatment We assume that the Zeeman energy $g \mu_{\mathrm{B}} B$ is much smalles than the Fermı energy $\frac{1}{2} m v^{2}$, so that the orbital motion is independent of the spin

We intioduce the probability density $P(x, \phi, \xi, t)$ for the electron to be at time t at position x with velocity \mathbf{v} $=(v \cos \phi, v \sin \phi, 0)$, in the spin state with spinor ξ $=\left(\xi_{1}, \xi_{2}\right)$ The dynamics of ξ depends on the local magnetıc field according to

$$
\begin{equation*}
\frac{d \xi}{d t}=\frac{\iota g \mu_{\mathrm{B}}}{2 \hbar} \mathbf{B} \boldsymbol{\sigma} \xi \tag{22}
\end{equation*}
$$

where $\boldsymbol{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ is the vector of Pauli matrices It is convenient to decompose $\xi=\chi_{1} \xi_{\uparrow}+\chi_{2} \xi_{\downarrow}$ into the local eıgenstates $\xi_{\uparrow}, \xi_{\downarrow}$ of $\mathbf{B} \boldsymbol{\sigma}$,

$$
\begin{equation*}
\xi_{\uparrow}=\binom{\cos \frac{\eta}{2} \mathrm{e}^{-\imath \pi f x / L}}{\sin \frac{\eta}{2} \mathrm{e}^{\imath \pi f x / L}}, \quad \xi_{\downarrow}=\binom{-\sin \frac{\eta}{2} \mathrm{e}^{-\imath \pi f x / L}}{\cos \frac{\eta}{2} \mathrm{e}^{i \pi f_{x} / L}}, \tag{23a}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{B} \boldsymbol{\sigma} \xi_{\uparrow}=B \xi_{\uparrow}, \quad \text { B } \boldsymbol{\sigma} \xi_{\downarrow}=-B \xi_{\rfloor}, \tag{23b}
\end{equation*}
$$

and use the real and imagnaty pats of the coefficients χ_{1}, χ_{2} as variables in the Boltzmann equation The dynamics of the vector of coefficients $c=\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$ $=\left(\operatorname{Re} \chi_{1}, \operatorname{Im} \chi_{1}, \operatorname{Re} \chi_{2}, \operatorname{Im} \chi_{2}\right)$ is given by

$$
\begin{gather*}
\frac{d c}{d t}=\frac{1}{\tau} M c, \quad M=M_{0}+M_{1} \cos \phi \tag{24a}\\
M_{0}=\omega_{\mathrm{B}} \tau\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right), \\
M_{1}=\frac{\pi f \ell}{L}\left(\begin{array}{cccc}
0 & -\cos \eta & 0 & \sin \eta \\
\cos \eta & 0 & -\sin \eta & 0 \\
0 & \sin \eta & 0 & \cos \eta \\
-\sin \eta & 0 & -\cos \eta & 0
\end{array}\right) \tag{24b}
\end{gather*}
$$

where $\omega_{\mathrm{B}}=g \mu_{\mathrm{B}} B / 2 \hbar$ is the piecession fiequency of the spm The Boltzmann equation takes the form

$$
\begin{align*}
\tau \frac{\partial}{\partial t} P(x, \phi, c, t)= & -\ell \cos \phi \frac{\partial P}{\partial x}-\sum_{i j} \frac{\partial}{\partial c_{i}}\left(M_{l_{j}} c_{j} P\right) \\
& -P+\int_{0}^{2 \pi d \phi^{\prime}} \frac{2 \pi}{2 \pi}\left(x, \phi^{\prime}, c, t\right) \tag{25}
\end{align*}
$$

where we have assumed isotiopic scattering (rate $1 / \tau$ $=v /($)

We look for a stationary solution to the Boltzmann equation, so the left-hand side of Eq (25) is zero and we omit the argument t of P A stationary flux of paiticles with an isotropic velocity distribution is injected at $x=0$, their spins all aligned with the local magnetic field (so $\chi_{2}=0$ at $x=0$) Without loss of generality we may assume that $\chi_{1}=1$ at x $=0$ No particles are incident from the other end, at $x=L$ Thus the boundary conditions ate
$P(x=0, \phi, c)=\delta\left(c_{1}-1\right) \delta\left(c_{2}\right) \delta\left(c_{3}\right) \delta\left(c_{4}\right) \quad$ if $\cos \phi>0$,
$P(x=L, \phi, c)=0 \quad$ if $\cos \phi<0$
This completes the formulation of the problem We compare two methods of solution The first is an exact numerical solution of the Boltzmann equation using the Monte Carlo
method. The second is an approximate analytical solution using the diffusion approximation, valid for $L \geqslant \epsilon$. We begin with the latter.

B. Diffusion approximation

The diffusion approximation amounts to the assumption that P has a simple cosine-dependence on ϕ,

$$
\begin{equation*}
P(x, \phi, c)=N(x, c)+J(x, c) \cos \phi \tag{2.7}
\end{equation*}
$$

To determine the density N and current J we substitute Eq. (2.7) into Eq. (2.5) and integrate over ϕ. This gives

$$
\begin{equation*}
t \frac{\partial J}{\partial x}=-\frac{\partial}{\partial c}\left(2 M_{0} c N+M_{1} c J\right) \tag{2.8}
\end{equation*}
$$

Similarly, multiplication with $\cos \phi$ before integration gives

$$
\begin{equation*}
\zeta \frac{\partial N}{\partial x}=-\frac{\partial}{\partial c}\left(M_{0} c J+M_{1} c N\right)-J \tag{2.9}
\end{equation*}
$$

Thus we have a closed set of partial differential equations for the unknown functions $N(x, c)$ and $J(x, c)$. Boundary conditions are obtained by multiplying Eq. (2.6) with $\cos \phi$ and integrating over ϕ :

$$
\begin{align*}
& N(x=0, c)+\frac{\pi}{4} J(x=0, c) \\
& \quad=\delta\left(c_{1}-1\right) \delta\left(c_{2}\right) \delta\left(c_{3}\right) \delta\left(c_{4}\right) \tag{2.10a}\\
& \quad N(x=L, c)-\frac{\pi}{4} J(x=L, c)=0 \tag{2.10b}
\end{align*}
$$

We seek the spin polarization $p=c_{1}^{2}+c_{2}^{2}-c_{3}^{2}-c_{4}^{2}$ of the transmitted electrons, characterized by the distribution

$$
\begin{equation*}
P(p)=\frac{\int d c J(x=L, c) \delta\left(c_{1}^{2}+c_{2}^{2}-c_{3}^{2}-c_{4}^{2}-p\right)}{\int d c J(x=L, c)} \tag{2.11}
\end{equation*}
$$

(The notation $\int d c \equiv \int d c_{1} \int d c_{2} \int d c_{3} \int d c_{4}$ indicates an integration over the spin variables.) We compute the first two moments of $P(p)$. The first moment \bar{p} is the fraction of transmitted electrons with spin up minus the fraction with spin down, averaged quantum mechanically over the spin state and statistically over the disorder. The variance Var p $=\overline{p^{2}}-\bar{p}^{2}$ gives an indication of the magnitude of the statistical fluctuations.

Integration of Eqs. (2.8)-(2.10) over the spin variables yields the equations and boundary conditions for the functions $N(x)=\int d c N(x, c)$ and $J(x)=\int d c J(x, c)$:

$$
\begin{gather*}
\ell \frac{d N}{d x}=-J, \quad \frac{d J}{d x}=0 \tag{2.12a}\\
N(0)+\frac{\pi}{4} J(0)=1, \quad N(L)-\frac{\pi}{4} J(L)=0 . \tag{2.12b}
\end{gather*}
$$

The solution

$$
\begin{equation*}
J(x)=\left(\frac{\pi}{2}+\frac{L}{\ell}\right)^{-1} \tag{2.13}
\end{equation*}
$$

determines the denominator of Eq. (2.11).
To determine \bar{p} we multiply Eqs. (2.8) and (2.9) with $\chi_{\alpha} \chi_{\beta}^{*}$ and integrate over c (recall that $\chi_{1}=c_{1}+i c_{2}, \chi_{2}=c_{3}$ $+i c_{4}$). It follows upon partial integration that

$$
\begin{align*}
& \int d c \chi_{\alpha} \chi_{\beta}^{*} \frac{\partial}{\partial c}\left(M_{0} c f\right) \\
& \quad=-\sum_{\rho, \sigma}\left(S_{\alpha \rho} \delta_{\beta \sigma}-\delta_{\alpha \rho} S_{\beta \sigma}\right) \int d c \chi_{\rho} \chi_{\sigma}^{*} f \tag{2.14a}
\end{align*}
$$

$$
\begin{align*}
& \int d c \chi_{\alpha} \chi_{\beta}^{*} \frac{\partial}{\partial c}\left(M_{1} c f\right) \\
& \quad=-\sum_{\rho, \sigma}\left(T_{\alpha \rho} \delta_{\beta \sigma}-\delta_{\alpha \rho} T_{\beta \sigma}\right) \int d c \chi_{\rho} \chi_{\sigma}^{*} f \tag{2.14b}
\end{align*}
$$

for arbitrary functions $f(x, c)$. The 2×2 matrices S, T are defined by

$$
\begin{equation*}
S=i \omega_{\mathrm{B}} \tau \sigma_{z}, \quad T=\frac{i \pi f \ell}{L}\left(\sigma_{z} \cos \eta-\sigma_{x} \sin \eta\right) \tag{2.15}
\end{equation*}
$$

In this way we find that the moments

$$
\begin{align*}
& N_{\alpha \beta}(x)=\int d c \chi_{\alpha} \chi_{\beta}^{*} N(x, c) \tag{2.16a}\\
& J_{\alpha \beta}(x)=\int d c \chi_{\alpha} \chi_{\beta}^{*} J(x, c) \tag{2.16b}
\end{align*}
$$

satisfy the ordinary differential equations

$$
\begin{align*}
\ell \frac{d N_{\alpha \beta}}{d x}= & \sum_{\rho, \sigma}\left(T_{\alpha \rho} \delta_{\beta \sigma}-\delta_{\alpha \rho} T_{\beta \sigma}\right) N_{\rho \sigma} \\
& +\sum_{\rho, \sigma}\left(S_{\alpha \rho} \delta_{\beta \sigma}-\delta_{\alpha \rho} S_{\beta \sigma}\right) J_{\rho \sigma}-J_{\alpha \beta} \tag{2.17a}\\
\ell \frac{d J_{\alpha \beta}}{d x}= & 2 \sum_{\rho, \sigma}\left(S_{\alpha \rho} \delta_{\beta \sigma}-\delta_{\alpha \rho} S_{\beta \sigma}\right) N_{\rho \sigma} \\
& +\sum_{\rho, \sigma}\left(T_{\alpha \rho} \delta_{\beta \sigma}-\delta_{\alpha \rho} T_{\beta \sigma}\right) J_{\rho \sigma} \tag{2.17b}
\end{align*}
$$

with boundary conditions

$$
\begin{gather*}
N_{\alpha \beta}(x=0)+\frac{\pi}{4} J_{\alpha \beta}(x=0)=\delta_{\alpha 1} \delta_{\beta 1} \tag{2.18a}\\
N_{\alpha \beta}(x=L)-\frac{\pi}{4} J_{\alpha \beta}(x=L)=0 \tag{2.18b}
\end{gather*}
$$

The mean polarization \bar{p} is determined by $J_{\alpha \beta}$ according to

FIG 2 Average and variance of the spin polarization p of the current transmitted through a two-dimensional region of length L $=25 \ell$, as a function of $\omega_{\mathrm{B}} \tau$, for a magnetıc field given by Eq (2 1) with $\eta=\pi / 3$ and $f=1$ The data points result from Monte Carlo simulations of the Boltzmann equation (25), the solid curves result from the diffusion approximation (27), and the dashed curves are the asymptotic formulas (220) and (227) Notice the transient regume (A) the randomized regime (B), and the adiabatic regime (C)

$$
\begin{align*}
\bar{p} & =\frac{J_{11}(L)-J_{22}(L)}{J(L)} \\
& =\left(\frac{\pi}{2}+\frac{L}{\ell}\right)\left[J_{11}(L)-J_{22}(L)\right]
\end{align*}
$$

Since Eq (217) is lineal in the eight functions $N_{\alpha \beta}(x), J_{\alpha \beta}(x)(\alpha, \beta=1,2)$, a solution requires the eigenvalues and right eigenvectors of the 8×8 matrix of coefficients These can be readily computed numeircally for any values of L / ℓ and $\omega_{\mathrm{B}} \tau$ We have found an analytic asymptotic solution for $L / \ell \geqslant>1$ and $\omega_{\mathrm{B}} \tau \gg(f \ell / L)^{2}$, given by

$$
\begin{equation*}
\bar{p}=\frac{k}{\sinh k}, \quad k=\frac{2 \pi f \sin \eta}{\sqrt{1+\left(2 \omega_{\mathrm{B}} \tau\right)^{2}}} \tag{220}
\end{equation*}
$$

In Fig 2 we compare the numerical solution (solid curve) with Eq (2 20) (dashed curve) for $L / /=25$ and $\eta=\pi / 3, f$ $=1$ The two curves ate almost indistinguishable, except for the smallest values of $\omega_{\mathrm{B}} \tau$

In a similar way, we compute the second moment of $P(p)$ by multiplying Eqs (28) and (29) with $\chi_{\alpha} \chi_{\beta}^{+} \chi_{\gamma} \chi_{\delta}^{*}$ and integrating over c The result is a closed set of equations,
$\epsilon \frac{d}{d x} N_{\alpha \beta \gamma \delta}=\sum_{\mu \nu \rho \sigma}\left(L_{\alpha \beta \gamma \delta}^{\mu \nu \rho \sigma} N_{\mu \nu \rho \sigma}+K_{\alpha \beta \gamma \delta}^{\mu \nu \rho \sigma \sigma} J_{\mu \nu \rho \sigma}\right)-J_{\alpha \beta \gamma \delta}$,
$\frac{d}{d x} J_{\alpha \beta \gamma \delta}=\sum_{\mu \nu \rho \sigma}\left(2 K_{\alpha \beta \gamma \delta}^{\mu \nu \rho \sigma} N_{\mu \nu \rho \sigma}+L_{\alpha \beta \gamma \delta}^{\mu \nu \rho \sigma} J_{\mu \nu \rho \sigma}\right)$,
where we have defined

$$
\begin{align*}
K_{\alpha \beta \gamma \delta}^{\mu \nu \rho \sigma}= & S_{\alpha \mu} \delta_{\beta \nu} \delta_{\gamma \rho} \delta_{\delta \sigma}-\delta_{\alpha \mu} S_{\beta \nu} \delta_{\gamma \rho} \delta_{\delta \sigma} \\
& +\delta_{\alpha \mu} \delta_{\beta \nu} S_{\gamma \rho} \delta_{\delta \sigma}-\delta_{\alpha \mu} \delta_{\beta \nu} \delta_{\gamma \rho} S_{\delta \sigma} \tag{222a}
\end{align*}
$$

$$
\begin{align*}
& L_{\alpha \beta \gamma \delta}^{\mu \nu \rho \sigma}= T_{\alpha \mu} \delta_{\beta \nu} \delta_{\gamma \rho} \delta_{\delta \sigma}-\delta_{\alpha \mu} T_{\beta \nu} \delta_{\gamma \rho} \delta_{\delta \sigma} \\
&+\delta_{\alpha \mu} \delta_{\beta \nu} T_{\gamma \rho} \delta_{\delta \sigma}-\delta_{\alpha \mu} \delta_{\beta \nu} \delta_{\gamma \rho} T_{\delta \sigma} \tag{222b}\\
& N_{\alpha \beta \gamma \delta}(x)=\int d c \chi_{\alpha} \chi_{\beta}^{*} \chi_{\gamma} \chi_{\delta}^{*} N(x, c) \\
& J_{\alpha \beta \gamma \delta}(x)=\int d c \chi_{\alpha} \chi_{\beta}^{*} \chi_{\gamma} \chi_{\delta}^{*} J(x, c) \tag{223b}
\end{align*}
$$

The boundaty conditions on the functions $N_{\alpha \beta \gamma \delta}$ and $J_{\alpha \beta \gamma \delta}$ are
$N_{\alpha \beta \gamma \delta}(x=0)+\frac{\pi}{4} J_{\alpha \beta \gamma \delta}(x=0)=\delta_{\alpha 1} \delta_{\beta 1} \delta_{\gamma 1} \delta_{\delta 1}$,
$N_{\alpha \beta \gamma \delta}(x=L)-\frac{\pi}{4} J_{\alpha \beta \gamma \delta}(x=L)=0$
The second moment $\overline{p^{2}}$ is determıned by

$$
\begin{align*}
\overline{p^{2}}= & \left(\frac{\pi}{2}+\frac{L}{\ell}\right)\left[J_{1111}(x=L)-J_{1122}(x=L)\right. \\
& \left.-J_{2211}(x=L)+J_{2222}(x=L)\right] \tag{2.26}
\end{align*}
$$

The numerical solution is plotted also in Fig 2, together with the asymptotic expression

$$
\begin{equation*}
\operatorname{Var} p=\frac{1}{3}+\frac{2 k \sqrt{3}}{3 \sinh (k \sqrt{3})}-\frac{k^{2}}{\sinh ^{2} k} \tag{227}
\end{equation*}
$$

It is evident from Eqs (220) and (2 27), and from Fig 2, that the regime with $\bar{p}=1$, Val $p=0$ is entered for $\omega_{\mathrm{B}} \tau \geqq f$ [for $\sin \eta=O(1)$], in agreement with Stein's citeiton (11) for adiabaticity For smaller $\omega_{\mathrm{B}} \tau$ adiabaticity is lost Theie is a transient regime $\omega_{\mathrm{B}} \tau \ll(f \ell / L)^{2}$, in which the precession fiequency is so low that the spin remams in the same state duing the entıe diffusion process For $(f / / L)^{2} \ll \omega_{\mathrm{B}} \tau \ll f$ the average polarization reaches a plateau value close to zero with a finite variance For a sufficiently nonuniform field, $f \sin \eta \gg 1$, we find in this regime $\bar{p}=0$ and Vat $p=1 / 3$, which means that the spin state is completely randomized The tiansient regime, the randomized regime, and the adrabatic tegime are indicated in Fig 2 by the letteis A, B, and C

C. Comparison with Monte Carlo simulations

In order to check the diffusion approximation we solved the full Boltzmann equation by means of a Monte Carlo simulation A patticle is moved from $x=0$ over a distance ζ_{1} in the dinection ϕ_{1}, then over a distance ζ_{2} in the direction ϕ_{2}, and so on, until it is reflected back to $x=0$ or transmitted to $x=L$ The step lengths ζ_{i} are chosen randomly fiom a Poisson distribution with mean ℓ The directions ϕ_{i} are chosen unformly fiom [$0,2 \pi$], except for the initial d_{1} iection ϕ_{1}, which is distributed $\propto \cos \phi_{1}$ The spin components are given by

$$
\begin{equation*}
\binom{\chi_{1}}{\chi_{2}}=\prod_{1} \mathrm{e}^{\left(S+T \cos \phi_{1}\right) /_{1} / \prime}\binom{1}{0} \tag{228}
\end{equation*}
$$

To find $\overline{p^{n}}$, one has to average $\left(\left|\chi_{1}\right|^{2}-\left|\chi_{2}\right|^{2}\right)^{n}$ over the transmitted particles. The results for $L / C=25$ are shown in Fig. 2 (data points). They agree very well with the results of the previous subsection, thus confirming the validity of the diffusion approximation for $L / 6 \geqslant 1$.

III. WEAK LOCALIZATION

A. Formulation of the problem

We turn to the effect of the nonuniform magnetic field on the weak-localization correction of a multiply connected system. We consider the same geometry as in Fig. 1, but now with periodic boundary conditions-to model a ring of circumference L. Only the effects of the magnetic field on the spin are included, to isolate the Berry phase from the conventional Aharonov-Bohm phase. As in the previous subsection, we assume that the orbital motion is independent of the spin dynamics. We follow LSG in applying the semiclassical theory of Chakravarty and Schmidt ${ }^{9}$ to the problem; however, we start at the level of the Boltzmann equation-rather than at the level of the diffusion equation-and make the diffusion approximation at a later stage of the calculation.

The weak-localization correction ΔG to the conductance is given by

$$
\begin{equation*}
\Delta G=-\frac{e^{2} D}{\pi \hbar L} \int_{0}^{\infty} d t \mathrm{e}^{-t / \tau_{\varphi}} C(t) \tag{3.1}
\end{equation*}
$$

where τ_{φ} is the phase coherence time and the diffusion coefficient $D=v / / d$ in d dimensions. (In our geometry $d=2$.) The "return quasiprobability" $C(t)$ is expressed as a sum over "Boltzmannian walks" $\mathbf{R}(t)$ with $\mathbf{R}(0)=\mathbf{R}(t)$,

$$
\begin{equation*}
C(t)=\sum_{\{\mathbf{R}(t)\}} W \operatorname{Tr}\left(U^{+} U^{-}\right) \tag{3.2}
\end{equation*}
$$

Here $W[\mathbf{R}(t)]$ is the weight of the Boltzmannian walk for a spinless particle. The 2×2 matrices $U^{ \pm}[\mathbf{R}(t)]$ are defined by

$$
\begin{equation*}
U^{ \pm}=T \exp \left\{ \pm \frac{i g \mu_{\mathrm{B}}}{2 \hbar} \int_{0}^{t} d t^{\prime} \mathbf{B}\left(\mathbf{R}\left(t^{\prime}\right)\right) \cdot \boldsymbol{\sigma}\right\} \tag{3.3}
\end{equation*}
$$

where \mathcal{T} denotes a time ordering. The factor $\operatorname{Tr}\left(U^{+} U^{-}\right)$in Eq. (3.2) accounts for the phase difference of time-reversed paths.

The Cooperon can be written in terms of a propagator χ,

$$
\begin{equation*}
C(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \int_{0}^{2 \pi} d \phi_{1} \sum_{\alpha, \beta} \chi_{\alpha \beta \beta \alpha}\left(x_{1}, x_{1} ; \phi, \phi_{1} ; t\right) \tag{3.4}
\end{equation*}
$$

that satisfies the kinetic equation

$$
\begin{align*}
\left(\frac{\partial}{\partial t}\right. & +\mathcal{B}) \chi_{\alpha \beta \gamma \delta}\left(x, x_{1} ; \phi, \phi_{1} ; t\right)-\frac{i g \mu_{\mathrm{B}}}{2 \hbar} \\
& \times \sum_{\alpha^{\prime}, \gamma^{\prime}}\left[(\mathbf{B}(x) \cdot \boldsymbol{\sigma})_{\alpha \alpha^{\prime}} \delta_{\gamma \gamma^{\prime}}-\delta_{\alpha \alpha^{\prime}}(\mathbf{B}(x) \cdot \boldsymbol{\sigma})_{\gamma \gamma^{\prime}}\right] \chi_{\alpha^{\prime} \beta \gamma^{\prime} \delta} \\
& =\delta(t) \delta\left(x-x_{1}\right) \delta\left(\phi-\phi_{1}\right) \delta_{\alpha \beta} \delta_{\gamma \delta} . \tag{3.5}
\end{align*}
$$

The Boltzmann operator \mathcal{B} is given by

$$
\begin{equation*}
\mathcal{B}=v \cos \phi \frac{\partial}{\partial x}+\frac{1}{\tau}-\frac{1}{\tau} \int_{0}^{2 \pi d \phi} \frac{d}{2 \pi} . \tag{3.6}
\end{equation*}
$$

The propagator χ is a moment of the probability distribution $P\left(x, \phi, U^{+}, U^{-}, t\right)$,

$$
\begin{equation*}
\chi_{\alpha \beta \gamma \delta}=\int d U^{+} \int d U^{-} U_{\alpha \beta}^{+} U_{\gamma \delta}^{-} P, \tag{3.7}
\end{equation*}
$$

that satisfies the Boltzmann equation

$$
\begin{align*}
{\left[\frac{\partial}{\partial t}+\right.} & \left.\mathcal{B}+\frac{\partial}{\partial U^{+}}\left(\frac{d U^{+}}{d t}\right)+\frac{\partial}{\partial U^{-}}\left(\frac{d U^{-}}{d t}\right)\right] \\
& \times P\left(x, \phi, U^{+}, U^{-}, t\right)=0 \tag{3.8}
\end{align*}
$$

with initial condition

$$
\begin{align*}
& P\left(x, \phi, U^{+}, U^{-}, 0\right) \\
& \quad=\delta\left(x-x_{1}\right) \delta\left(\phi-\phi_{1}\right) \delta\left(U^{+}-\mathbb{1}\right) \delta\left(U^{-}-1\right) \tag{3.9}
\end{align*}
$$

The notation $d U^{+}$or $d U^{-}$indicates the differential of the real and imaginary parts of the elements of the 2×2 matrix U^{+}or U^{-}. We will write this in a more explicit way in the next subsection.

The Boltzmann equation (3.8) has the same form as the one that we studied in Sec. II. The difference is that we have four times as many internal degrees of freedom. Instead of a single spinor ξ we now have two spinor matrices U^{+}and U^{-}. A first doubling of the number of degrees of freedom occurs because we have to follow the evolution of both spin up and spin down. A second doubling occurs because we have to follow both the normal and the time-reversed evolution.

B. Diffusion approximation

We make the diffusion approximation to the Boltzmann equation (3.8), by following the steps outlined in Sec. II. The 4×2 matrix $u^{ \pm}$containing the real and imaginary parts of $U^{ \pm}$,

$$
u^{ \pm}=\left(\begin{array}{cc}
\operatorname{Re} U_{11}^{ \pm} & \operatorname{Re} U_{12}^{ \pm} \tag{3.10}\\
\operatorname{Im} U_{11}^{ \pm} & \operatorname{Im} U_{12}^{ \pm} \\
\operatorname{Re} U_{21}^{ \pm} & \operatorname{Re} U_{22}^{ \pm} \\
\operatorname{Im} U_{21}^{ \pm} & \operatorname{Im} U_{22}^{ \pm}
\end{array}\right),
$$

has a time evolution governed by

$$
\begin{equation*}
\tau \frac{d u^{ \pm}}{d t}= \pm Z(x) u^{ \pm} \tag{3.11a}
\end{equation*}
$$

$$
Z(x)=\omega_{\mathrm{B}} \tau\left(\begin{array}{cccc}
0 & -\cos \eta & \sin \eta \sin \frac{2 \pi f x}{L} & -\sin \eta \cos \frac{2 \pi f x}{L} \tag{3.11b}\\
\cos \eta & 0 & \sin \eta \cos \frac{2 \pi f x}{L} & \sin \eta \sin \frac{2 \pi f x}{L} \\
-\sin \eta \sin \frac{2 \pi f x}{L} & -\sin \eta \cos \frac{2 \pi f x}{L} & 0 & \cos \eta \\
\sin \eta \cos \frac{2 \pi f x}{L} & -\sin \eta \sin \frac{2 \pi f x}{L} & -\cos \eta & 0
\end{array}\right) .
$$

The Boltzmann equation (3.8) becomes, in a more explicit notation,

$$
\begin{align*}
& \tau \frac{\partial}{\partial t} P\left(x, \phi, u^{+}, u^{-}, t\right) \\
&=-\zeta \cos \phi \frac{\partial P}{\partial x}-\sum_{t, j, k} \frac{\partial}{\partial u_{i j}^{+}} Z_{i k}(x) u_{k j}^{+} P \\
&+\sum_{t, j, k} \frac{\partial}{\partial u_{\imath \jmath}^{-}} Z_{t k}(x) u_{k j}^{-} P-P \\
&+\int_{0}^{2 \pi} \frac{d \phi^{\prime}}{2 \pi} P\left(x, \phi^{\prime}, u^{+}, u^{-}, t\right) . \tag{3.12}
\end{align*}
$$

We now make the diffusion ansatz in the form

$$
\begin{equation*}
\int_{0}^{\infty} d t \mathrm{e}^{-t / \tau_{\varphi}} \int_{0}^{2 \pi} d \phi_{1} P=N+J \cos \phi \tag{3.13}
\end{equation*}
$$

By integrating the Boltzmann equation over ϕ, once with weight 1 and once with weight $\cos \phi$, we obtain two coupled equations for the functions $N\left(x, u^{+}, u^{-}\right)$and $J\left(x, u^{+}, u^{-}\right)$. Next we multiply both equations with $U_{\alpha \beta}^{+} U_{\gamma \delta}^{-}$and integrate over the real and imaginary parts of the matrix elements. The moments $N_{\alpha \beta \gamma \delta}$ and $J_{\alpha \beta \gamma \delta}$ defined by

$$
\begin{align*}
& N_{\alpha \beta \gamma \delta}(x)=\int d U^{+} \int d U^{-} U_{\alpha \beta}^{+} U_{\gamma \delta}^{-} N, \tag{3.14a}\\
& J_{\alpha \beta \gamma \delta}(x)=\int d U^{+} \int d U^{-} U_{\alpha \beta}^{+} U_{\gamma \delta}^{-} J, \tag{3.14b}
\end{align*}
$$

are found to obey the ordinary differential equations

$$
\begin{aligned}
\frac{d N_{\alpha \beta \gamma \delta}}{d x}= & \frac{i g \mu_{\mathrm{B}} \tau}{2 \hbar} \sum_{\alpha^{\prime}, \gamma^{\prime}}\left[(\mathbf{B}(x) \cdot \boldsymbol{\sigma})_{\alpha \alpha^{\prime}} \delta_{\gamma \gamma^{\prime}}\right. \\
& \left.-\delta_{\alpha \alpha^{\prime}}(\mathbf{B}(x) \cdot \boldsymbol{\sigma})_{\gamma \gamma^{\prime}}\right] J_{\alpha^{\prime} \beta \gamma^{\prime} \delta}-\left(1+\tau / \tau_{\varphi}\right) J_{\alpha \beta \gamma \delta}
\end{aligned}
$$

$$
\begin{align*}
\ell \frac{d J_{\alpha \beta \gamma \delta}}{d x}= & \frac{i g \mu_{\mathrm{B}} \tau}{\hbar} \sum_{\alpha^{\prime}, \gamma^{\prime}}\left[(\mathbf{B}(x) \cdot \boldsymbol{\sigma})_{\alpha \alpha^{\prime}} \delta_{\gamma \gamma^{\prime}}\right. \\
& \left.-\delta_{\alpha \alpha^{\prime}}(\mathbf{B}(x) \cdot \boldsymbol{\sigma})_{\gamma \gamma^{\prime}}\right] N_{\alpha^{\prime} \beta \gamma^{\prime} \delta} \\
& -\left(2 \tau / \tau_{\varphi}\right) N_{\alpha \beta \gamma \delta}+2 \tau \delta_{\alpha \beta} \delta_{\gamma \delta} \delta\left(x-x_{1}\right) \tag{3.15b}
\end{align*}
$$

The periodic boundary conditions are

$$
\begin{equation*}
N_{\alpha \beta \gamma \delta}(0)=N_{\alpha \beta \gamma \delta}(L), \quad J_{\alpha \beta \gamma \delta}(0)=J_{\alpha \beta \gamma \delta}(L) \tag{3.16}
\end{equation*}
$$

The Cooperon C and the propagator χ of Eqs. (3.4) and (3.7) are related to the density N by

$$
\begin{align*}
& N_{\alpha \beta \gamma \delta}(x)= \int_{0}^{\infty} d t c^{-t / \tau_{\varphi}} \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \\
& \times \int_{0}^{2 \pi} d \phi_{1} \chi_{\alpha \beta \gamma \delta}\left(x, x_{1} ; \phi, \phi_{1} ; t\right), \tag{3.17}\\
& \sum_{\alpha, \beta} N_{\alpha \beta \beta \alpha}\left(x_{1}\right)=\int_{0}^{\infty} d t e^{-t / \tau_{\varphi}} C(t) \tag{3.18}
\end{align*}
$$

Hence the weak-localization correction (3.1) is obtained from N by

$$
\begin{equation*}
\Delta G=-\frac{e^{2} D}{\pi \hbar L} \sum_{\alpha, \beta} N_{\alpha \beta \beta \alpha}\left(x_{1}\right) . \tag{3.19}
\end{equation*}
$$

The transformation to the local basis of spin states (2.3) takes the form of a unitary transformation of the moments N and J,

$$
\begin{equation*}
\tilde{N}_{\alpha \beta \gamma \delta}=\sum_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}} Q_{\alpha \alpha^{\prime}} Q_{\gamma \gamma^{\prime}} N_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime}} Q_{\beta^{\prime} \beta}^{\dagger} Q_{\delta^{\prime} \delta}^{\dagger} \tag{3.20a}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{J}_{\alpha \beta \gamma \delta}=\sum_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}} Q_{\alpha \alpha^{\prime}} Q_{\gamma \gamma^{\prime}} J_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime}} Q_{\beta^{\prime} \beta}^{\dagger} Q_{\delta^{\prime} \delta}^{\dagger} \tag{3.20b}
\end{equation*}
$$

$$
Q(x)=\left(\begin{array}{cc}
e^{i \pi f_{\lambda} / L} \cos \frac{\eta}{2} & e^{-i \pi f x / L} \sin \frac{\eta}{2} \tag{3.20c}\\
-e^{i \pi f x / L} \sin \frac{\eta}{2} & e^{-i \pi f x / L} \cos \frac{\eta}{2}
\end{array}\right)
$$

FIG 3 Weak-localization correction ΔG of a ring in a spatially rotating magnetic field, as a function of the tilt angle η Plotted is the result of $\mathrm{Eq}(321)$ for $f=5, L=500 /, L_{\varphi}=125 /$ The upper panel is for $\omega_{\mathrm{B}} \tau \ll 1$ From top to bottom $\omega_{\mathrm{B}} \tau=10^{-5}, 10^{-4}, 2$ $\times 10^{-4}, 3 \times 10^{-4}, 5 \times 10^{-4}, 10^{-3}, 10^{2}$ At $\omega_{\mathrm{B}} \tau \simeq(f / / L)^{2}$, the weak localızation correction crosses over from the transient regime A of Eq (323) to the randomized regime B of Eq (3 30) The lower panel is for $\omega_{\mathrm{B}} \tau \gtrsim 1$ Fiom bottom to top $\omega_{\mathrm{B}} \tau=01,1,2,5,10$, 100 Here the weak-localization correction reaches the adıabatic regime C of Eq (3 22)

The thansformed moments obey

$$
\begin{align*}
& \ell \frac{d \widetilde{N}_{\alpha \beta \gamma \delta}}{d x}= \sum_{\alpha^{\prime} \gamma^{\prime}}\left(T_{\alpha \alpha^{\prime}} \delta_{\gamma \gamma^{\prime}}+\delta_{\alpha \alpha^{\prime}} T_{\gamma \gamma^{\prime}}\right) \widetilde{N}_{\alpha^{\prime} \beta \gamma^{\prime} \delta} \\
&+\sum_{\alpha^{\prime} \gamma^{\prime}}\left(S_{\alpha \alpha^{\prime}} \delta_{\gamma \gamma^{\prime}}-\delta_{\alpha \alpha^{\prime}} S_{\gamma \gamma^{\prime}}\right) \widetilde{J}_{\alpha^{\prime} \beta \gamma^{\prime} \delta} \\
&-\left(1+\tau / \tau_{\varphi}\right) \widetilde{J}_{\alpha \beta \gamma \delta} \tag{321a}\\
& \frac{d \widetilde{J}_{\alpha \beta \gamma \delta}}{d x}= \\
& 2 \sum_{\alpha^{\prime} \gamma^{\prime}}\left(S_{\alpha \alpha^{\prime}} \delta_{\gamma \gamma^{\prime}}-\delta_{\alpha \alpha^{\prime}} S_{\gamma \gamma^{\prime}}\right) \widetilde{N}_{\alpha^{\prime} \beta \gamma^{\prime} \delta} \\
&+\sum_{\alpha^{\prime} \gamma^{\prime}}\left(T_{\alpha \alpha^{\prime}} \delta_{\gamma \gamma^{\prime}}+\delta_{\alpha \alpha^{\prime}} T_{\gamma \gamma^{\prime}}\right) \widetilde{J}_{\alpha^{\prime} \beta \gamma^{\prime} \delta} \tag{321b}\\
&-\left(2 \tau / \tau_{\varphi}\right) \widetilde{N}_{\alpha \beta \gamma \delta}+2 \tau \delta_{\alpha \beta} \delta_{\gamma \delta} \delta\left(x-x_{1}\right)
\end{align*}
$$

with the same 2×2 matuces S and T as in Sec II Because the transformation from N to \widetilde{N} is unitary, the weaklocalization correction is still given by $\Delta G=$ $-\left(e^{2} D / \pi \hbar L\right) \sum_{\alpha \beta} \widetilde{N}_{\alpha \beta \beta \alpha}\left(x_{1}\right)$, as in Eq (3 19)

We have solved Eq (321) with penodic boundary condıtions by numerically computing the eigenvalues and (right) elgenvectors of the 8×8 matrix of coefficients The resulting ΔG is plotted in Fig 3 as a function of the tilt angle η In the adiabatic regıme $\omega_{\mathrm{B}} \tau \gtrdot f f$ we find the conductance oscillations due to the Berry phase These are given by ${ }^{6}$

$$
\begin{equation*}
\Delta G=-\frac{e^{2}}{\pi \hbar} \frac{L_{\varphi}}{L} \frac{\sinh \left(L / L_{\varphi}\right)}{\cosh \left(L / L_{\varphi}\right)-\cos (2 \pi f \cos \eta)} \tag{322}
\end{equation*}
$$

analogously to the Aharonov-Bohm oscillations ${ }^{4}$ (The length $L_{\varphi}=\sqrt{D \tau_{\varphi}}$ is the phase-coherence length) In the randomized regime $(f / / L)^{2} \ll \omega_{\mathrm{B}} \tau \ll f$ there are no conductance oscillations Instead we find a reduction of the weak localization conection, due to dephasing by spin scattering In the transient regime $\omega_{\mathrm{B}} \tau \lessdot(f / / L)^{2}$ the effect of the field on the spin can be ignoied, ${ }^{10}$ and the weak-localization correction remains at its zeıo-field value

$$
\begin{equation*}
\Delta G=-\frac{e^{2}}{\pi \hbar} \frac{L_{\varphi}}{L} \operatorname{cotanh}\left(\frac{L}{2 L_{\varphi}}\right) \tag{323}
\end{equation*}
$$

C. Comparison with Loss, Schoeller, and Goldbart

If we replace the Boltzmann operato $\mathcal{B} \mathrm{in} \mathrm{Eq}$ (35) by the diffusion operator $-D \partial^{2} / \partial x^{2}$ and integrate over ϕ and ϕ_{1}, we end up with the diffusion equation studied by LSG,

$$
\begin{gather*}
\left(\frac{\partial}{\partial t}-\mathcal{H}\right) \chi_{\alpha \beta \gamma \delta}\left(x, x_{1}, t\right)=\delta(t) \delta\left(x-x_{1}\right) \delta_{\alpha \beta} \delta_{\gamma \delta}, \tag{324a}\\
\mathcal{H}=D \frac{\partial^{2}}{\partial x^{2}}+\frac{\operatorname{tg} \mu_{\mathrm{B}}}{2 \hbar}\left[\mathbf{B}(x) \boldsymbol{\sigma}_{1}-\mathbf{B}(x) \boldsymbol{\sigma}_{2}\right] \tag{324b}
\end{gather*}
$$

$$
\begin{equation*}
\chi_{\alpha \beta \gamma \delta}\left(x, x_{1}, t\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \int_{0}^{2 \pi} d \phi_{1} \chi_{\alpha \beta \gamma \delta}\left(x, x_{1}, \phi, \phi_{1}, t\right) \tag{324c}
\end{equation*}
$$

Heie σ_{1} and σ_{2} act, iespectively, on the first and third indices of $\chi_{\alpha \beta \gamma \delta}$

The difference between the diffusion equation (324) and the diffusion equation (315) is that Eq (324) holds only if $\omega_{\mathrm{B}} \tau \ll 1$, while Eq (315) holds for any value of $\omega_{\mathrm{B}} \tau$ LSG used Eq (324) to argue that there exists an adiabatic region within the regime $\omega_{\mathrm{B}} \tau \ll 1$ In contrast, our analysis of Eq (3 15) shows that adiabaticity is not possible if $\omega_{\mathrm{B}} \tau \ll 1$ The argument of LSG is based on a mapping of the diffusion equation (324) onto the Schiodinger equation studied in Ref 11 However, the mapping is not canted out exphictly in this subsection we will solve Eq (324) exactly using this mapping, to demonstrate that the adiabatic regime of LSG is in fact the randomized regime B This misidentification perhaps occurred because both regimes are stationary with respect to the magnetic-field stiength (cf Fig 2) However, Beny-phase oscillations of the conductance are only supported in the adiabatic regime C, not in the iandomized iegime B (cf Fig 3)

We solve Eq (324) for the weak localization correction

$$
\begin{equation*}
\Delta G=-\frac{e^{2} D}{\pi \hbar L} \sum_{\alpha \beta}\langle x, \alpha, \beta|\left(\tau_{\varphi}^{-1}-\mathcal{H}\right)^{-1}|x, \beta, \alpha\rangle, \tag{325}
\end{equation*}
$$

where we introduced the basis of eigenstates $|x, \alpha, \beta\rangle$ (with $\alpha, \beta= \pm 1$) of the position operator x and the spin operators σ_{1} and σ_{2} The opelator \mathcal{H} commutes with

$$
\begin{equation*}
J=\frac{L}{2 \pi l} \frac{\partial}{\partial x}+\frac{1}{2} f\left(\sigma_{1 z}+\sigma_{2 z}\right) \tag{326}
\end{equation*}
$$

It is therefore convenient to use as a basis, instead of the eigenstates $|x, \alpha, \beta\rangle$, the eigenstates $|J, \alpha, \beta\rangle$ of $J, \sigma_{1 z}$, and $\sigma_{2 z}$ The eigenvalue J of J is an integer because of the periodic boundary conditions The eigenfunctions are given by

$$
\begin{align*}
& \left\langle x, \alpha^{\prime}, \beta^{\prime} \mid J, \alpha, \beta\right\rangle \\
& \quad=\frac{1}{\sqrt{L}} \delta_{\alpha^{\prime} \alpha} \delta_{\beta^{\prime} \beta^{\prime}} \exp \left[\frac{2 \pi l x}{L}\left(J-\frac{1}{2} f \alpha-\frac{1}{2} f \beta\right)\right] \tag{327}
\end{align*}
$$

In the basis $\left.\left.\left\{|J, 1,1\rangle,|J, 1,-1\rangle,\left.\right|_{J},-1,1\right\rangle,\left.\right|_{J},-1,-1\right\rangle\right\}$ the operator \mathcal{H} has matrix elements

$$
\begin{align*}
& \left\langle J^{\prime}, \alpha^{\prime}, \beta^{\prime}\right| \mathcal{H}|\jmath, \alpha, \beta\rangle \\
& \quad=-D\left(\frac{2 \pi}{L}\right)^{2} \delta_{J^{\prime},}\left(\begin{array}{cccc}
(J-f)^{2} & 0 & 0 & 0 \\
0 & j^{2} & 0 & 0 \\
0 & 0 & J^{2} & 0 \\
0 & 0 & 0 & (J+f)^{2}
\end{array}\right) \\
& \quad-\imath \omega_{\mathrm{B}} \delta_{J^{\prime} \prime}\left(\begin{array}{cccc}
0 & \sin \eta & -\sin \eta & 0 \\
\sin \eta & -2 \cos \eta & 0 & -\sin \eta \\
-\sin \eta & 0 & 2 \cos \eta & \sin \eta \\
0 & -\sin \eta & \sin \eta & 0
\end{array}\right) \tag{3}
\end{align*}
$$

Substitution into Eq (3 25) yields

$$
\begin{align*}
\Delta G= & \left.-\left.\frac{e^{2} D}{\pi \hbar} \frac{1}{L^{2}} \sum_{\alpha \beta} \sum_{J=-\infty}^{\infty}\langle J, \alpha, \beta|\left(\tau_{\varphi}^{-1}-\mathcal{H}\right)^{-1}\right|_{J, \beta}, \alpha\right\rangle \\
= & -\frac{e^{2}}{\pi \hbar} \frac{1}{2 \pi^{2}} \sum_{j=-\infty}^{\infty}\left[\left(\gamma+J^{2}\right)^{2}\left(f^{2}+\gamma+J^{2}\right)\right. \\
& \left.+\kappa^{2}\left(3 f^{2}+4 \gamma+4 J^{2}+f^{2} \cos 2 \eta\right)\right] \\
& \times\left[\left(\gamma+j^{2}\right)^{2}\left(f^{4}+2 f^{2} \gamma+\gamma^{2}-2 f^{2} J^{2}+2 \gamma J^{2}+J^{4}\right)\right. \\
& +2 \kappa^{2}\left(f^{4}+3 f^{2} \gamma+2 \gamma^{2}-f^{2} J^{2}+4 \gamma J^{2}\right. \\
& \left.\left.+2 J^{4}+f^{2}\left(f^{2}+\gamma-3 J^{2}\right) \cos 2 \eta\right)\right]^{-1} \tag{3}
\end{align*}
$$

We abbreviated $\kappa=2 \omega_{\mathrm{B}} \tau(L / 2 \pi \zeta)^{2}$ and $\gamma=\left(L / 2 \pi L_{\varphi}\right)^{2}$ The sum over j can be done analytically for $\kappa \gtrdot 1$, with the result

$$
\begin{gather*}
\Delta G=-\frac{e^{2}}{\pi \hbar} \frac{1}{4 \pi Q}\left[\frac{4 a_{-}+4 \gamma+(3+\cos 2 \eta) f^{2}}{\sqrt{a_{-}} \tan \pi \sqrt{a_{-}}}\right. \\
- \\
\left.-\frac{4 a_{+}+4 \gamma+(3+\cos 2 \eta) f^{2}}{\sqrt{a_{+}} \tan \pi \sqrt{a_{+}}}\right], \\
Q=\left[f^{4}\left(9 \cos ^{2} 2 \eta-2 \cos 2 \eta-7\right)\right. \tag{330b}\\
 \tag{330c}\\
\left.-32 \gamma f^{2}(1+\cos 2 \eta)\right]^{1 / 2}, \\
a_{ \pm}=
\end{gather*}
$$

We have checked that our solution (3 29) of Eq (324) coincides with the solution of Eq (315) in the regime $\omega_{\mathrm{B}} \tau$ $\leqslant 1$ (The two sets of cuives are indistingurshable on the scale of Fig 3) In particular, Eq (3 30) comendes with the cuives labeled B in Fig 3, demonstrating that it represents the randomized regime-without Berry-phase oscillations

Recently ${ }^{12}$ Loss, Schoeller, and Goldbait have reconsidered the condition for adiabaticity we agree on the equations [our exact solution (329) is then starting point], but differ in the interpretations They interpiet our randomized regime B as being the adiabatic regime and explain the absence of Berry-phase oscillations as being due to the effects of field-induced dephasing We reserve the name "adiabatic' for regime C, because if the spin would follow the magnetic field adiabatically in regime B, it should not suffer dephasıng

IV. CONCLUSIONS

In conclusion, we have computed the effect of a nonuniform magnetic field on the spin polarization (Sec II) and weak-localization correction (Sec III) in a disordered conductor We have identified three regimes of magnetic-field strength the transient regime $\omega_{\mathrm{B}} \tau \ll(f / / L)^{2}$, the randomized regime $(f / / L)^{2} \ll \omega_{\mathrm{B}} \tau \ll f$, and the adiabatic regime $\omega_{\mathrm{B}} \tau \gtrdot f$ In the transient regime (labeled A in Figs 2 and 3), the effect of the magnetic field can be neglected In the ran domized regıme (labeled B), the depolauzation and the suppression of the weak-localization correction are maximal In the adiabatic regime (labeled C), the polarization is restored and the weak-localization correction exhibits oscillations due to the Berry phase

The criterion for adiabaticity is $\omega_{\mathrm{B}} t_{\mathrm{c}} \gg 1$, with ω_{B} the spin-precession frequency and t_{c} a characteristic timescale of the orbital motion We find $t_{\mathrm{c}}=\tau$, in agreement with Stern, ${ }^{3}$ but in contradiction with the result $t_{\mathrm{c}}=\tau(L / 6)^{2}$ of Loss, Schoeller, and Goldbart ${ }^{6}$ By solving exactly the diffusion equation for the Cooperon derived in Ref 6, we have demonstiated unambiguously that the regime that in that paper was identified as the adrabatic regime is in fact the randomized regime B-without Berry-phase oscillations

We have focused on transport properties, such as conductance and spin-resolved transmission Thermodynamic pioperties, such as the persistent current, in a non-uniform mag netic field have been studied by Loss, Goldbart, and Balatsky ${ }^{112}$ in connection with Berry-phase oscillations These papers assumed ballistıc systems We believe that the adiabaticity criterion $\omega_{\mathrm{B}} \tau \geqslant 1$ for disordered systems should apply to thermodynamic properties as well as tiansport pioperties This stiong-field critetion presents a pessimistic outlook for the prospect of experiments on the Beriy phase in disordered systems

ACKNOWLEDGMENTS

We ale indebted to $L P$ Kouwenhoven for bringing this problem to our attention, and to P W Biouwer, D Loss, and A Stern for useful discussions This research was suppoited by the 'Nederlandse organısatue voor Wetenschappellık Onderzoek" (NWO) and by the "Stuchting voor Fundamenteel Onderzoek deı Matene" (FOM)
*Piesent address Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands
${ }^{1}$ M V Berry, Proc R Soc London, Ser A 392, 45 (1984)
${ }^{2}$ D Loss, P Goldbart, and A V Balatsky, Phys Rev Lett 65, 1655 (1990), in Granular Nanoelectronics, edited by D K Ferry, J R Barker, and C Jacobonı (Plenum, New York, 1991)
${ }^{3}$ A Stern, Phys Rev Lett 68, 1022 (1992), in Quantum Coherence and Reality, edited by J S Anandan and J L Safko (World Scientific, Singapore, 1992)
${ }^{4}$ B L Altshuler, A G Aronov, and B Z Spivak, Pis'ma Zh Eksp Teor Fiz 33, 101 (1981) [JETP Lett 33, 94 (1981)], D Yu Sharvin and Yu V Sharvin tbid 34, 285 (1981) [34, 272 (1981)], A G Aionov and Yu V Shaivin, Rev Mod Phys 59, 755 (1987)
${ }^{5}$ A Stern, in Mesoscoptc Electron Transport, edited by L P Kouwenhoven, G Schon, and L L Sohn (Kluwer, Dordrecht, 1997)
${ }^{6}$ D Loss, H Schoeller, and P M Goldbart, Phys Rev B 48, 15218 (1993)
${ }^{7}$ L P Kouwenhoven (private communication) Experıments in a ballıstıc system were reported by A F Morpurgo, J P Heida, T M Klapwijk, B J van Wees, and G Borghs, Phys Rev Lett 80, 1050 (1998)
${ }^{8}$ Yu Lyanda-Geller, I L Aleıner, and P M Goldbart, Phys Rev Lett 81, 3215 (1998)
${ }^{9}$ S Chakravarty and A Schmıd, Phys Rep 140, 193 (1986)
${ }^{10}$ Because we include only the effect of the magnetic field on the spin, we do not find the suppression of weak localization due to time-reversal-symmetry breaking of the orbital motion, nor do we find the Aharonov-Bohm oscillations due to the coupling of the magnetic field to the charge
${ }^{11}$ D Loss and P M Goldbart, Phys Rev B 45, 13544 (1992)
${ }^{12}$ Loss, Schoeller, and Goldbart, cond-mat/9805128 (unpubhished)

