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Conditions for adiabatic spin transport in disordered systems
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We address the controversy concerning the necessary conditions for the observation of Berry phases in
disordered mesoscopic conductors. For this purpose, we calculate the spin-dependent conductance of disor-
dered two-dimensional structures in the presence of inhomogeneous magnetic fields. Our numerical results
show that for both, the overall conductance and quantum corrections, the relevant parameter defining adiabatic
spin transport scales with the square root of the number of scattering events, in generalization of Stern’s
original proposalA. Stern, Phys. Rev. Let8, 1022 (1992]. This could hinder a clear-cut experimental
observation of Berry phase effects in diffusive metallic rings.
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In contrast to phenomena related to Aharonov-Bohnfield strengths in the quantum Hall regime that let an experi-
(AB) phase&for charge carriers, the corresponding observamental observation of Berry phases in diffusive metallic
tion of Berry phasesdue to the coupling of a spin to an rings appear rather unlikely.
orientationally nonuniform magnetic fiel@ requires the Alternatively, in analogy to the ballistic traveling time
limit of adiabaticspin evolution. In mesoscopic conductors, L/vg, it appears convincing to associatefor diffusive sys-
such a limit corresponds to the situation where the carrietems withty,, the time the electron takes thffusethrough
spin can follow the spatially varying field during transport the structure. This argumentation has been put forward by
through the system. In terms of time scales, the adiabatitoss and co-workers%!! By calculating the quantum cor-
limit is reached when the Larmor frequency of spin precesrections of the conductance in diffusive 1D rings, they pre-
sion, ws=2uB/%, is large compared to the reciprocal of a dicted clear signatures of Berry’s phase to be observable in a
characteristic time scalg on which, from the point of view regime given by
of the spin, the direction of the field has changed signifi-
cantly during motion. There is a consensus thatlfallistic Qip>{/L. (©)]
(disorder-freg¢ systems with magnetic-field configurations,
commonly theoretically considered® and experimentally ~This condition for adiabaticity differs from criteriof2) by a
realized” t.~L/vg, wherev denotes the Fermi velocity of factor (L/¢)? and predicts for the observability of Berry
the carriers and. is the characteristic length scale of the phases a field strength above 20 HiTyhich is well in the
system over which the field changes. For one-dimensiondeach of modern experimental technigdes.

(1D) ballistic systems the condition for adiabaticity, In view of various recent experimental efforts to observe
>27lt,, therefore reads Berry phases in the magneto conductance of mesoscopic
rings,*271*a clarification of the issue of the relevant time
s scale is desirable. The derivations of conditig@s and (3)
Q1D5m>1’ (D) were based on diagrammatic and semiclassical techniques.
Here, we choose a different approach and study numerically
where we introduced the adiabaticity paramedgp,. the spin-dependent conductance of ballistic and disordered

However, in the case afisorderedsystems, there are tWo mesoscopic systems in the presence of a spatially varying
candidates for the characteristic time (i) the mean elastic magnetic fieldB(r) =V x A(r). The Hamiltonian for nonin-

. . . . _ 2
scattering timer and (ii) 'ghe Thouless t'meTh_(L/,e) 7o teracting electrons with effective mass* and charge—e
with € =vg7 as the elastic mean free path. The issue thaFeads

which of these two time scales is the relevant one has re-
cently led to a controversial discussioH’

In his proposal for 1D diffusive rings Stérrperturba- H= 1
tively calculated the lifetime of the adiabatic eigenstates and 2m*
compared it tat1,. He arrived at the condition

2
+V(r)+uB(r)-o. (4)

-, e
P+ (r)

The nontrivial coupling of the spin to the magnetic field
Qip>L/¢ @ enters via the Zeeman term(f)- &, whered is the Paull

for adiabatic spin transpofEq. (7) in Ref. 1]. This corre- ~ Spin vector andu=g*ef#i/(4myc) the magnetic moment
sponds to setting.=r. Comparing Eqs(1) and (2) one  With g* the gyromagnetic ratio. The electrostatic potential
recognizes that in the diffusive regime> ¢, the adiabatic V(F) includes the confinement and the potential of random
limit would require a magnetic field/¢ times larger than in impurities in the disordered case. Af=0, the spin-
the ballistic case. This “pessimistic criterion,” which later dependent conductance of a mesoscopic system with two
has also been advocated by van Langeal.’ would imply  attached leads is given by the Landauer forrhula
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FIG. 1. 2D strip configuration used for the calculations of the
spin-dependent conductance. The magnetic lﬁ{lld) performs a (Tu)

180° rotation within the plane of the strip. Spin stat8g ( S, are
defined with respect to thg axis.
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Here,tg;m is the transmission amplitude from an incoming )

channelm with spin s to an outgoing channeing’,s”). We 001 ‘ ‘ ‘ ey

calculate t?,sm by projecting the corresponding Green- 0o 2 4 6 8 10

function matrix onto the asymptotic spinors in the leads. We Q . .

compute the Green function for Hamiltonié$) numerically, FIG. 2. Ensemble-averaged normalized transmis§ign) for a

using a generalized version of the recursive Green-functiofisorderedsolid lineg and ballistic(dashedl 2D strip (Fig. 1) as a
technique based on a tight-binding mddéhcluding spint®  function of the adiabaticity paramet@rB. The panels correspond
We model the(nonmagnetig disorder potential leading to © different disorder strengthga) quasiballistic;L/¢=0.5 (L/W
elastic scattering within an Anderson model by choosing ran=4:4); (b) moderateL/¢=3 (L/W=7.8); and(c) diffusive, L/¢
dom &-like scatterers with amplitudes following a box distri- — 10 (L/W=13.9). The ballistic curves, Eq6), differ slightly

bution. The spin-dependent conductance is then obtainefaom each other since thEy correspond to different Fermi wave vec-
. : tors (ranging fromkgW/7=7.7 to 11.6, but show the same overall
from ensemble averages over independent disord

Yorent i .
configuration a7 orentzian decay witlQ (dotted

We now turn to the subject of interest and study how
adiabaticity is approached in mesoscopic spin quantum trans-1.4Q, . This allows us to introduce a quantity that solely
port. For this purpose, we introduce a model system consistharacterizes the adiabatic regime in the case of several open
ing of a 2D strip with a rotating in-plane magnetic field channels.
between two ballistic leads, see Flg 1. This system can also For B—0, the Spin direction is preserved ar“l'qL is
be regarded as a model for transport through magnetic danaximal. In the limit of a strond field, the spin stays adia-
main walls. We assume Incorming electrons with spin-dowrpatically aligned with the orientationally inhomogeneous
polarization in the-y direction;” injected from the left with  fie|q during transport, minimizing the probability of leaving

Fermi wave numbeke=27/\g. __the conductor in Fig. 1 in a spin-down state. The Lorentzian
We first consider the overall conductance. In the ba”'St'Cdependence of |, on Q~B reflects this behavior and ap-

case, It Is feasible to _de_rlve an a_nalytlcal expression for thﬁears as the natural measure for the crossover from the nona-
spin-resolved transmission of this system using a transfer;

matrix approach. The normalized transmission for spin- diabatic (T —1,Q<1) to the adiabaticT; —0.Q>1) re-

down polarized incoming electrons to exit the system withd'™Me- . . S .
spin-down polarization reatfs To find a proper condition for adiabaticity in the disor-

dered case we compute the ensemble averaged transmission
T (T,,) in the presence of elastic scattering fof<¢ as a

1 M M Sinz(E\/H—sz o

TR DY

M -1,-11 —

function of Q and compare it to the ballistic resu). Our
——————= (6) results for different ratiok/¢ are shown as the solid lines in
m’,m=1 m=1  M(1+Q3) Fig. 2 exhibiting the following features.
: : : - (i) The oscillations in the ballistic transmission are aver-
with the generalized adiabaticity parameteg. (1)] aged out with increasing disorder.
mT,)Z}l/Z (i) For Q>1, the normalizedT ) is larger in the dis-

T

_gF m*[LWB
Qm= keW mg | hele

W (7)  ordered than in the ballistic case. This means that in the
presence of elastic scattering a stronger scaled fild

for the mth propagating mode in a 2D strip of lengthand  required for acceding to the adiabatic regimg(®f )~0.

width W. Summing over all transverse modes in £, we (i) For Q<1 we observe the opposite behavior: The

find that the overall dependence of the ballistic transmissiomon-adiabatic limit of almost maximum transmissifh, |)

(dashed lines in Fig.)2is given by a Lorentziarm| | =1/(1  is restricted to lower magnetic fields compared to the ballis-

+Q?) (dotted lines. This defines an “effective” adiabaticity tic case.

parameteiQ~B for the 2D strip, withQ,;<Q<Qy, andQ (iv) The crossover regioQ~1 is characterized by a
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7 3 5 10 20 50 6g:,1(69,,+ 69, ,) (dotted as a function ofQ for a diffusive strip
with  L/€=15. For comparison, we also show &g,
L/ —69,)/(69,,+69;,) (dashed-dotted and the polarization

FIG. 3. Functional dependence of fit parametdys (solid line) [T, ) (T DVI(T ) +(T )] (solid).
andN,q (dashed on the scaled length/¢ of the disordered strip.
Linear regression yieldbl,=0.31 L/€)** (solid ling and Nnag e used a 10Ref. 20 random-walk model taking into ac-
=0.18 (L/€)™™ (dashedl For comparison, the mean number of o0t explicitly the interface between the disordered and bal-
listic regions. We find tha{N) obeys a power law in./¢
Swith exponent 1.91 which, as expected, is lower than two
(dotted line in Fig. 3. In Fig. 3, besides small deviations for
small L/¢ in the nondiffusive limit, there is a good agree-
ment with the fitted straight lines fdr/€=5, indicating a
transmission plateau, which approachds,)~(T,)~0.5 diffusive behavior. Within the given error tolerance, all three
with increasing diffusiveness. Here, the nonmagnetic disoreurves in Fig. 3 exhibit identical exponents and deviate only
der acts as a spin randomizer of the originally spin-polarizedn the prefactor of order one.
current. The feature€)—(iv) already begin to appear in the ~ We conclude from our numerical, quantum-mechanical
quasiballistic regime[Fig. 2(@)] and become more pro- results, together with the expression &) from the inde-
nounced with increasing degree of diffusiveness given by th@endent random-walk model, that the adiabaticity parameter
ratio L/¢ [Fig. 2(c)]. scales with\(N). This enables us to formulate general

After this qualitative discussion we now derive a quanti- (system-independentadiabaticity condition for diffusive
tative condition for adiabaticity in the disordered strip. In systems, which only depends on the corresponding adiaba-
analogy to the ballistic case, we expect the disorder averageitity parameteiQ of the ballistic system and the mean num-
transmission(T ;) to exhibit a scaled Lorentzian depen- ber of scattering eventdN):?*
dence in the limits of small and lard@. Indeed, in the adia-
batic limit the Lorentz function is an excellent fit to the dif-
fusive curve(T | ) in Fig. 2(c), if the ballistic paramete® is Q> (N).
replaced byQ/+/N_4 with N, being fitted(left inset Fig. 3.
Corresponding results hold for the nonadiabatic limit whereFor diffusive 1D rings, this criterion is in perfect agreement
we use the scalin@+/N, 4 (right inset in Fig. 3. We further ~ With Stern’s original conditior{2).
determinedN 4 and N4 for various ratiosL/¢ and obtain So far, we considered the total conductance dominated by
power-law dependences illustrated in Fig. 3. We can, hencdhe Boltzmann contribution. However, signatures of Berry
formulate as a necessary condition for adiabatic spin trang2hases in diffusive conductors appear only in the phase co-
port through the disordered 2D stri@=(L/¢)%%. Compar- herent part of the conductance, i.e., quantum corrections
ing this with Eq.(2) we obtain a smaller exponent. To ex- such as AB oscillations and universal conductance fluctua-
plain this deviation, we note that E(®) can be written in the  tions (UCF's). To decide whether distinct Berry phase ef-
more general fornQ>\(N), with the average number of f€cts, €.g., in diffusive rings, can be observed at realistic
scattering eventéN)=(t)/ 7= (L/€)2. This suggests to as- Magnetic-field strengths, one has to check if an adiabaticity
sociateN .q andN,,,qwith the number of scattering events the condition, different from Eq(8), holds for the quantum cor-
electron has to undergo upon traversing the microstructuré€ctions. For this purpose, spin-resolved UCF's represent a
Due to the strong coupling of the finite-size 2D strip to thesuitable quantity, defined a$ges= (TS —(Tss)? in
ballistic leads, we expect the diffusion time to be smallerunits ofe?/h. We calculatedsg, s numerically as a function
than the Thouless timéy,, thus reducing the number of of Q for a diffusive 2D strip withL/€=15. The results are
scattering events. depicted in Fig. 4 in terms of the normalized difference

To confirm the above arguments we, independently(dg,,—9;)/(89,,+ 89, ) which can be regarded as a po-
checked numerically the dependence(bf) on the scaled larization. We note that the UCF’s exhibit precisely the same
lengthL/¢ of a finite disorder conducting strip. To this end, scaling behavior as the corresponding quantity for the total

mission(T, ) and fitted Lorentzians in the nonadiabatieft) and
adiabatic(right) limit for strip with L/€=10. (Error bars include
uncertainty from fitting procedure.

®
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conductance, K, —T;)/(T;;+T;), and consequently ~1) is restricted to fields smaller than 0.1 T. In the broad
obey condition(8). Figure. 4 also illustrates the important intermediateB-field range, covering four orders of magni-
fact that in a wide regioff/L=<=Q=L/¢, the respective adia- tude, the magnetoconductance is expected to show at most
batic (T, , 9;,) and nonadiabaticT( |, g, ;) components the signatures of the Aharonov-Anandan phase.
are comparable in magnitude. Recently, imprints of Berry’s phase in AB oscillations
We further note that numerical quantum calculations ofhave been reported for holes in quasiballistic 2D GaAs rings
the spin-dependent magneto-conductance in disordered ringgth strong spin-orbit interactiol: A rough estimate of the
subject to a circular inhomogeneoBdield show that signa-  system parameters suggests that the experimental conditions
tures of Berry phases appear only in the AB oscillations ofnay fyifill the adiabaticity criterior(8) with B replaced by
the adiabatic componentsT; ) anddg; ), which are domi- 5 effective Rashba field strength.
r)ategi2 by ellectrons.with spin always aligned with the .Iocal To summarize, we studied spin-dependent quantum trans-
field.” In view of Fig. 4, we can hence conclude for diffu- ot through 2D disordered geometries. We showed that the
sive rings that in the experimentally relevant plateau regione|evant parameter defining the adiabatic limit both for the
¢/L=Q<1, the adiabatic components, which show Berysta| conductance and the quantum corrections scales with
phase signatures, are of the same magnitude as the nonadiga square root of the number of scattering events. This can
batic components. Berry phase effects in the AB oscillationgye cast into a generalized criterion for adiabaticity for both
of the total conductgnce 'and the_UC_F's are hence'maslfed Wallistic and disordered systems. It appears as a severe ob-
the regular, nonadiabatic c_on_trlbut|63n.However, in this  stacle for direct experimental observation of Berry phases in
broad plateau region one still finds effects of the inhomogethe conductance through diffusive metal rings. Our numeri-
neous magnetic field that can be ascribed to the nonadiabatig, findings indicate that elastic scattering due to nonmag-
genera4l|zat|on of the Berry phase, the Aharonov-Anandametic impurities in the presence of a spatially varying mag-
phas€* Our numerical results imply that to observe clearnetic field exhibits features similar to those in systems with

Berry phase effects such as the "magic angles” found byspin flips associated with the scattering process as for mag-
Engel and Loss in the magnetoconductance and UCF's of atic impurities or Rashba spin-orbit coupling.

diffusive rings, one has to go to the truly adiabatic regime
given by condition(8).

For a typical experimental AB setup based on copper
rings with radius =500 nm andl =15 nm(Ref. 12, strict
application of criterion(8) corresponds td-field strengths We would like to thank H.-A. Engel and D. Loss for help-
larger than 1& T. On the other hand, according to the con-ful discussions and acknowledge support from the Deutsche
dition Q<1/1(N), the opposite nonadiabatic regimgl(,)  Forschungsgemeinschaft.
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