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Conditions for adiabatic spin transport in disordered systems
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We address the controversy concerning the necessary conditions for the observation of Berry phases in
disordered mesoscopic conductors. For this purpose, we calculate the spin-dependent conductance of disor-
dered two-dimensional structures in the presence of inhomogeneous magnetic fields. Our numerical results
show that for both, the overall conductance and quantum corrections, the relevant parameter defining adiabatic
spin transport scales with the square root of the number of scattering events, in generalization of Stern’s
original proposal@A. Stern, Phys. Rev. Lett.68, 1022 ~1992!#. This could hinder a clear-cut experimental
observation of Berry phase effects in diffusive metallic rings.
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In contrast to phenomena related to Aharonov-Bo
~AB! phases2 for charge carriers, the corresponding obser
tion of Berry phases3 due to the coupling of a spin to a
orientationally nonuniform magnetic fieldB requires the
limit of adiabaticspin evolution. In mesoscopic conductor
such a limit corresponds to the situation where the car
spin can follow the spatially varying field during transpo
through the system. In terms of time scales, the adiab
limit is reached when the Larmor frequency of spin prec
sion, vs52mB/\, is large compared to the reciprocal of
characteristic time scaletc on which, from the point of view
of the spin, the direction of the field has changed sign
cantly during motion. There is a consensus that forballistic
~disorder-free! systems with magnetic-field configuration
commonly theoretically considered1,4–6 and experimentally
realized,7 tc;L/vF , wherevF denotes the Fermi velocity o
the carriers andL is the characteristic length scale of th
system over which the field changes. For one-dimensio
~1D! ballistic systems the condition for adiabaticity,vs
@2p/tc , therefore reads8

Q1D[
vs

2pvF /L
@1, ~1!

where we introduced the adiabaticity parameterQ1D .
However, in the case ofdisorderedsystems, there are tw

candidates for the characteristic timetc : ~i! the mean elastic
scattering timet and ~ii ! the Thouless timetTh5(L/,)2t,
with ,5vFt as the elastic mean free path. The issue t
which of these two time scales is the relevant one has
cently led to a controversial discussion.9,10

In his proposal for 1D diffusive rings Stern1 perturba-
tively calculated the lifetime of the adiabatic eigenstates
compared it totTh . He arrived at the condition

Q1D@L/, ~2!

for adiabatic spin transport@Eq. ~7! in Ref. 1#. This corre-
sponds to settingtc5t. Comparing Eqs.~1! and ~2! one
recognizes that in the diffusive regime,L@,, the adiabatic
limit would require a magnetic fieldL/, times larger than in
the ballistic case. This ‘‘pessimistic criterion,’’ which late
has also been advocated by van Langenet al.,9 would imply
0163-1829/2003/68~4!/041303~4!/$20.00 68 0413
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field strengths in the quantum Hall regime that let an exp
mental observation of Berry phases in diffusive meta
rings appear rather unlikely.

Alternatively, in analogy to the ballistic traveling tim
L/vF , it appears convincing to associatetc for diffusive sys-
tems withtTh , the time the electron takes todiffusethrough
the structure. This argumentation has been put forward
Loss and co-workers.4,10,11 By calculating the quantum cor
rections of the conductance in diffusive 1D rings, they p
dicted clear signatures of Berry’s phase to be observable
regime given by

Q1D@,/L. ~3!

This condition for adiabaticity differs from criterion~2! by a
factor (L/,)2 and predicts for the observability of Berr
phases a field strength above 20 mT,11 which is well in the
reach of modern experimental techniques.7

In view of various recent experimental efforts to obser
Berry phases in the magneto conductance of mesosc
rings,7,12–14 a clarification of the issue of the relevant tim
scale is desirable. The derivations of conditions~2! and ~3!
were based on diagrammatic and semiclassical techniq
Here, we choose a different approach and study numeric
the spin-dependent conductance of ballistic and disorde
mesoscopic systems in the presence of a spatially var
magnetic fieldBW (rW)5¹W 3AW (rW). The Hamiltonian for nonin-
teracting electrons with effective massm* and charge2e
reads

H5
1

2m*
FpW 1

e

c
AW ~rW !G2

1V~rW !1mBW ~rW !•sW . ~4!

The nontrivial coupling of the spin to the magnetic fie
enters via the Zeeman termmBW (rW)•sW , wheresW is the Pauli
spin vector andm5g* e\/(4m0c) the magnetic momen
with g* the gyromagnetic ratio. The electrostatic potent
V(rW) includes the confinement and the potential of rand
impurities in the disordered case. AtT50, the spin-
dependent conductance of a mesoscopic system with
attached leads is given by the Landauer formula15
©2003 The American Physical Society03-1

https://core.ac.uk/display/11529031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


g

n-
W

tio

an
i-
in
rd

ow
an
sis
ld
al
d
w

ti
th
fe

ith

io

ly
open

-
us
g
ian
-
ona-

r-
ssion

n

er-

the

he

lis-

ec-
ll

he

RAPID COMMUNICATIONS

MARKUS POPP, DIEGO FRUSTAGLIA, AND KLAUS RICHTER PHYSICAL REVIEW B68, 041303~R! ~2003!
G5
e2

h (
s8,s561

Ts8s5
e2

h (
m8,m51

M

(
s8,s561

uts8s
m8mu2. ~5!

Here, ts8s
m8m is the transmission amplitude from an incomin

channelm with spin s to an outgoing channel (m8,s8). We

calculate ts8s
m8m by projecting the corresponding Gree

function matrix onto the asymptotic spinors in the leads.
compute the Green function for Hamiltonian~4! numerically,
using a generalized version of the recursive Green-func
technique based on a tight-binding model15 including spin.16

We model the~nonmagnetic! disorder potential leading to
elastic scattering within an Anderson model by choosing r
domd-like scatterers with amplitudes following a box distr
bution. The spin-dependent conductance is then obta
from ensemble averages over independent diso
configurations.17

We now turn to the subject of interest and study h
adiabaticity is approached in mesoscopic spin quantum tr
port. For this purpose, we introduce a model system con
ing of a 2D strip with a rotating in-plane magnetic fie
between two ballistic leads, see Fig. 1. This system can
be regarded as a model for transport through magnetic
main walls. We assume incoming electrons with spin-do
polarization in the2y direction,18 injected from the left with
Fermi wave numberkF52p/lF .

We first consider the overall conductance. In the ballis
case, it is feasible to derive an analytical expression for
spin-resolved transmission of this system using a trans
matrix approach. The normalized transmissionT↓↓ for spin-
down polarized incoming electrons to exit the system w
spin-down polarization reads19

T↓↓[
1

M (
m8,m51

M

ut21,21
m8m u25 (

m51

M sin2S p

2
A11Qm

2 D
M ~11Qm

2 !
~6!

with the generalized adiabaticity parameter@Eq. ~1!#

Qm[
g*

kFW

m*

m0
S LWB

hc/e D F12S mp

kFW
D 2G21/2

~7!

for the mth propagating mode in a 2D strip of lengthL and
width W. Summing over all transverse modes in Eq.~6!, we
find that the overall dependence of the ballistic transmiss
~dashed lines in Fig. 2! is given by a LorentzianT↓↓.1/(1
1Q2) ~dotted lines!. This defines an ‘‘effective’’ adiabaticity
parameterQ;B for the 2D strip, withQ1,Q,QM andQ

FIG. 1. 2D strip configuration used for the calculations of t

spin-dependent conductance. The magnetic fieldBW (x) performs a

180° rotation within the plane of the strip. Spin states (SW in , SW out) are
defined with respect to they axis.
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;1.4Q1D . This allows us to introduce a quantity that sole
characterizes the adiabatic regime in the case of several
channels.

For B→0, the spin direction is preserved andT↓↓ is
maximal. In the limit of a strongB field, the spin stays adia
batically aligned with the orientationally inhomogeneo
field during transport, minimizing the probability of leavin
the conductor in Fig. 1 in a spin-down state. The Lorentz
dependence ofT↓↓ on Q;B reflects this behavior and ap
pears as the natural measure for the crossover from the n
diabatic (T↓↓→1,Q!1) to the adiabatic (T↓↓→0,Q@1) re-
gime.

To find a proper condition for adiabaticity in the diso
dered case we compute the ensemble averaged transmi
^T↓↓& in the presence of elastic scattering forlF!, as a
function of Q and compare it to the ballistic result~6!. Our
results for different ratiosL/, are shown as the solid lines i
Fig. 2 exhibiting the following features.

~i! The oscillations in the ballistic transmission are av
aged out with increasing disorder.

~ii ! For Q@1, the normalized̂T↓↓& is larger in the dis-
ordered than in the ballistic case. This means that in
presence of elastic scattering a stronger scaled fieldQ is
required for acceding to the adiabatic regime of^T↓↓&'0.

~iii ! For Q!1 we observe the opposite behavior: T
non-adiabatic limit of almost maximum transmission^T↓↓&
is restricted to lower magnetic fields compared to the bal
tic case.

~iv! The crossover regionQ;1 is characterized by a

FIG. 2. Ensemble-averaged normalized transmission^T↓↓& for a
disordered~solid lines! and ballistic~dashed! 2D strip ~Fig. 1! as a
function of the adiabaticity parameterQ;B. The panels correspond
to different disorder strengths:~a! quasiballistic;L/,50.5 (L/W
54.4); ~b! moderate,L/,53 (L/W57.8); and~c! diffusive, L/,
510 (L/W513.9). The ballistic curves, Eq.~6!, differ slightly
from each other since they correspond to different Fermi wave v
tors ~ranging fromkFW/p57.7 to 11.6!, but show the same overa
Lorentzian decay withQ ~dotted!.
3-2
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transmission plateau, which approaches^T↓↓&'^T↑↓&'0.5
with increasing diffusiveness. Here, the nonmagnetic dis
der acts as a spin randomizer of the originally spin-polari
current. The features~i!–~iv! already begin to appear in th
quasiballistic regime@Fig. 2~a!# and become more pro
nounced with increasing degree of diffusiveness given by
ratio L/, @Fig. 2~c!#.

After this qualitative discussion we now derive a quan
tative condition for adiabaticity in the disordered strip.
analogy to the ballistic case, we expect the disorder avera
transmission^T↓↓& to exhibit a scaled Lorentzian depe
dence in the limits of small and largeQ. Indeed, in the adia-
batic limit the Lorentz function is an excellent fit to the di
fusive curvê T↓↓& in Fig. 2~c!, if the ballistic parameterQ is
replaced byQ/ANad with Nad being fitted~left inset Fig. 3!.
Corresponding results hold for the nonadiabatic limit wh
we use the scalingQANnad ~right inset in Fig. 3!. We further
determinedNad and Nnad for various ratiosL/, and obtain
power-law dependences illustrated in Fig. 3. We can, he
formulate as a necessary condition for adiabatic spin tra
port through the disordered 2D strip:Q@(L/,)0.95. Compar-
ing this with Eq.~2! we obtain a smaller exponent. To e
plain this deviation, we note that Eq.~2! can be written in the
more general formQ@A^N&, with the average number o
scattering eventŝN&5^tTh&/t5(L/,)2. This suggests to as
sociateNad andNnadwith the number of scattering events th
electron has to undergo upon traversing the microstruct
Due to the strong coupling of the finite-size 2D strip to t
ballistic leads, we expect the diffusion time to be smal
than the Thouless timetTh , thus reducing the number o
scattering events.

To confirm the above arguments we, independen
checked numerically the dependence of^N& on the scaled
lengthL/, of a finite disorder conducting strip. To this en

FIG. 3. Functional dependence of fit parametersNad ~solid line!
andNnad ~dashed! on the scaled lengthL/, of the disordered strip.
Linear regression yieldsNad50.31 (L/,)1.9 ~solid line! and Nnad

50.18 (L/,)1.88 ~dashed!. For comparison, the mean number
scattering eventŝN&50.48 (L/,)1.91 is also shown~dotted!, ob-
tained from an independent 1D random-walk model. Insets: Tra
mission^T↓↓& and fitted Lorentzians in the nonadiabatic~left! and
adiabatic~right! limit for strip with L/,510. ~Error bars include
uncertainty from fitting procedure.!
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we used a 1D~Ref. 20! random-walk model taking into ac
count explicitly the interface between the disordered and b
listic regions. We find that̂N& obeys a power law inL/,
with exponent 1.91 which, as expected, is lower than t
~dotted line in Fig. 3!. In Fig. 3, besides small deviations fo
small L/, in the nondiffusive limit, there is a good agree
ment with the fitted straight lines forL/,*5, indicating a
diffusive behavior. Within the given error tolerance, all thr
curves in Fig. 3 exhibit identical exponents and deviate o
in the prefactor of order one.

We conclude from our numerical, quantum-mechani
results, together with the expression for^N& from the inde-
pendent random-walk model, that the adiabaticity param
scales withA^N&. This enables us to formulate ageneral
~system-independent! adiabaticity condition for diffusive
systems, which only depends on the corresponding adia
ticity parameterQ of the ballistic system and the mean num
ber of scattering eventŝN&:21

Q@A^N&. ~8!

For diffusive 1D rings, this criterion is in perfect agreeme
with Stern’s original condition~2!.

So far, we considered the total conductance dominated
the Boltzmann contribution. However, signatures of Be
phases in diffusive conductors appear only in the phase
herent part of the conductance, i.e., quantum correcti
such as AB oscillations and universal conductance fluct
tions ~UCF’s!. To decide whether distinct Berry phase e
fects, e.g., in diffusive rings, can be observed at realis
magnetic-field strengths, one has to check if an adiabati
condition, different from Eq.~8!, holds for the quantum cor
rections. For this purpose, spin-resolved UCF’s represe
suitable quantity, defined asdgs8s5A^Ts8s

2 &2^Ts8s&
2 in

units ofe2/h. We calculateddgs8s numerically as a function
of Q for a diffusive 2D strip withL/,515. The results are
depicted in Fig. 4 in terms of the normalized differen
(dg↓↓2dg↑↓)/(dg↓↓1dg↑↓) which can be regarded as a p
larization. We note that the UCF’s exhibit precisely the sa
scaling behavior as the corresponding quantity for the to

s-

FIG. 4. Quantum fluctuationsdg↓↓ /(dg↓↓1dg↑↓) ~dashed! and
dg↑↓ /(dg↓↓1dg↑↓) ~dotted! as a function ofQ for a diffusive strip
with L/,515. For comparison, we also show (dg↓↓
2dg↑↓)/(dg↓↓1dg↑↓) ~dashed-dotted! and the polarization
@^T↓↓&2^T↑↓&#/@^T↓↓&1^T↑↓&# ~solid!.
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conductance, (T↓↓2T↑↓)/(T↓↓1T↑↓), and consequently
obey condition~8!. Figure. 4 also illustrates the importa
fact that in a wide region,/L&Q&L/,, the respective adia
batic (T↑↓ , dg↑↓) and nonadiabatic (T↓↓ , dg↓↓) components
are comparable in magnitude.

We further note that numerical quantum calculations
the spin-dependent magneto-conductance in disordered
subject to a circular inhomogeneousB field show that signa-
tures of Berry phases appear only in the AB oscillations
the adiabatic components (^T↑↓& anddg↑↓), which are domi-
nated by electrons with spin always aligned with the lo
field.22 In view of Fig. 4, we can hence conclude for diffu
sive rings that in the experimentally relevant plateau reg
,/L&Q,1, the adiabatic components, which show Be
phase signatures, are of the same magnitude as the non
batic components. Berry phase effects in the AB oscillatio
of the total conductance and the UCF’s are hence maske
the regular, nonadiabatic contribution.23 However, in this
broad plateau region one still finds effects of the inhomo
neous magnetic field that can be ascribed to the nonadia
generalization of the Berry phase, the Aharonov-Anand
phase.24 Our numerical results imply that to observe cle
Berry phase effects such as the ‘‘magic angles’’ found
Engel and Loss11 in the magnetoconductance and UCF’s
diffusive rings, one has to go to the truly adiabatic regim
given by condition~8!.

For a typical experimental AB setup based on cop
rings with radiusr 05500 nm and,515 nm~Ref. 12!, strict
application of criterion~8! corresponds toB-field strengths
larger than 103 T. On the other hand, according to the co
dition Q!1/A^N&, the opposite nonadiabatic regime (^T↓↓&
ha

o

.W

G

Le
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;1) is restricted to fields smaller than 0.1 T. In the bro
intermediateB-field range, covering four orders of magn
tude, the magnetoconductance is expected to show at m
the signatures of the Aharonov-Anandan phase.

Recently, imprints of Berry’s phase in AB oscillation
have been reported for holes in quasiballistic 2D GaAs rin
with strong spin-orbit interaction.14 A rough estimate of the
system parameters suggests that the experimental condi
may fulfill the adiabaticity criterion~8! with B replaced by
an effective Rashba field strength.

To summarize, we studied spin-dependent quantum tra
port through 2D disordered geometries. We showed that
relevant parameter defining the adiabatic limit both for t
total conductance and the quantum corrections scales
the square root of the number of scattering events. This
be cast into a generalized criterion for adiabaticity for bo
ballistic and disordered systems. It appears as a severe
stacle for direct experimental observation of Berry phase
the conductance through diffusive metal rings. Our nume
cal findings indicate that elastic scattering due to nonm
netic impurities in the presence of a spatially varying ma
netic field exhibits features similar to those in systems w
spin flips associated with the scattering process as for m
netic impurities or Rashba spin-orbit coupling.
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