Distribution of Parametric Conductance Derivatives of a Quantum Dot

P W Brouwer, ${ }^{1}$ S A van Langen, ${ }^{1}$ K M Frahm, ${ }^{1}$ * M Buttıker, ${ }^{2}$ and C W J Beenakker ${ }^{1}$
${ }^{1}$ Instituut Lorentz Leiden Universty PO Box 95062300 RA Leiden The Netherlands
${ }^{2}$ Departement de Physique Theorique Universite de Geneve 1211 Geneve 4 Switzerland

(Received 24 February 1997)

Abstract

The conductance G of a quantum dot with smgle-mode ballistic point contacts depends sensitively on external parameters X such as gate voltage and magnetic field We calculate the joint distribution of G and $d G / d X$ by relating it to the distribution of the Wigner Smith time delay matrix of a chaotic system The distribution of $d G / d X$ has a singularity at zero and algebract tals While G and $d G / d X$ are correlated, the ratto of $d G / d X$ and $\sqrt{G(1-G)}$ is independent of G Coulomb interactions change the distribution of $d G / d X$ by inducing a transition from the grand canonical to the canonical ensemble All these predictions can be tested in semiconductor microstuuctures or microwave cavities [S0031 9007(97)03744 7]

PACS numbers 7323 -b 0545 +b 4225 Bs 8530 Vw

Parametric fluctuations in quantum systems with a chaotic classical dynamics are of fundamental importance for the characterization of mesoscopic systems The fluctuating dependence of an energy level $E_{l}(X)$ on an external parameter X, such as the magnetic field, has received considerable attention [1] A key role is played by the "level velocity" $d E_{J} / d X$, describing the response to a small perturbation [2-4] In open systems, the role of the level velocity is played by the "conductance velocity" $d G / d X$ Remarkably little is known about its distribution

The interest in this problem was stimulated by experiments on semiconductor microstructures known as quantum dots, in which the election motion is ballistic and chaotic [5] A typical quantum dot is confined by gate electrodes, and connected to two election reservours by bal listic point contacts, thiough which only a few modes can propagate at the Fermı level The parametıc dependence of the conductance has been measured by several groups [6-8] In the sungle-mode limit, parametric fluctuations are of the same order as the average, so that one needs the complete distribution of G and $d G / d X$ to character ize the system Knowing the average and variance is not sufficient Analytical results are avalable for point con tacts with a large number of modes [9-15] In this paper, we present the complete distribution in the opposite limit of two single-mode point contacts and show that it differs strikingly from the multimode case considered previously

The main differences which we have found are the following We consider the joint distribution of the conductance G and the derivatives $\partial G / \partial V, \partial G / \partial X$ with respect to the gate voltage V and an external parameter X (typıcally the magnetic field) If the point contacts contan a large number of modes, $P(G, \partial G / \partial V, \partial G / \partial X)$ factorizes into three independent Gaussian distributions [9-12] In the single-mode case, in contrast, we find that this distribution does not factorize and decays algebraically rather than exponentally By integrating out G and one of the two derivatives, we obtain the conductance velocity distributions $P(\partial G / \partial V)$ and $P(\partial G / \partial X)$ plotted in Fig 1 Both
distıbutions have a sungularity at zero velocity, and alge braic tails A remarkable prediction of our theory is that the correlations between G, on the one hand, and $\partial G / \partial V$ and $\partial G / \partial X$, on the other hand, can be transformed away by the change of variables $G=\left(2 e^{2} / h\right) \sin ^{2} \theta$, where θ is the polar coordinate introduced in Ref [13] The derivatuves $\partial \theta / \partial V$ and $\partial \theta / \partial X$ are statistically independent of θ There exists no change of varables that transforms away the correlations between $\partial G / \partial V$ and $\partial G / \partial X$

Another new feature of the single mode case concerns the effect of Coulomb interactions [16,17] In the sımplest model, the strength of the Coulomb repulsion is measured by the ratio of the charging eneigy e^{2} / C (with C the capacitance of the quantum dot) and the mean level spacing Δ In the regime $e^{2} / C \gg \Delta$, where most experiments are done, Coulomb interactions suppress fluctuations of the charge Q on the quantum dot as a function of V or X, at the expense of fluctuations in the electrical potential U Since the Fermi level μ in the quantum dot is pinned by the reservoirs, the kinetic energy $E=\mu-U$ at the Fermı level fluctuates as well Fluctuations of E cannot be ignored, because the conductance is determined by E, and not by μ An ensemble of quantum dots with fixed Q and fluctuating E behaves effectively as a canonical en-semble-rather than a grand-canonical ensemble In the opposite regime $e^{2} / C \ll \Delta$, the energy E does not fluctuate on the scale of the level spacing The ensemble is now truly grand-canonical Fluctuations of E on the scale of Δ can be neglected in the multimode case, so that the distinction between canonical and grand-canonical averages is irrelevant In the single-mode case the distinction becomes important We will see that the distribution of the conductance velocities is different in the two ensembles (The distribution of the conductance itself is the same) The difference between grand-canonical and canomical av erages has been studied extensively in connection with the problem of the persistent current [18-20], which is a thermodynamic property Here we find a difference in the case of a transport property, which is more unusual [21,22]

FIG 1 Distributions of conductance velocities in a chaotic cavity with two single-mode point contacts [inset in (a)], computed from Eq (10) Dashed curves are for $\beta=1$ (timereversal symmetry), solid curves for $\beta=2$ (no time-reveisal symmetry) (The case $\beta=4$, which is simular to $\beta=2$, is omitted for clanty) The distribution of $\Delta \partial G / \partial E$ (grand canonical ensemble) is shown in (a) and the distirbution of $\partial G / \partial Q$ (canonical ensemble) is shown in (b) (The conductance G is measured in units of $2 e^{2} / h$, the charge Q in units of $e)$ In (c) the distribution of $X_{0} \partial G / \partial X$ is shown for the grandcanonical ensemble (the canonical case being nearly identical on a linear scale) The inset compares the canonical (C) and grand-canonical (GC) iesults for $\beta=2$ on a logarithmic scale

To derive these results, we combine a scattering formalism with random-matrix theory [23] The 2×2 scattering matrix S determines the conductance

$$
\begin{equation*}
G=\left|S_{12}\right|^{2}, \tag{1}
\end{equation*}
$$

and the (unscreened) compressibilities [17]

$$
\begin{equation*}
\frac{\partial Q}{\partial E}=\frac{1}{2 \pi \iota} \operatorname{tr} S^{\dagger} \frac{\partial S}{\partial E}, \quad \frac{\partial Q}{\partial X}=\frac{1}{2 \pi l} \operatorname{tr} S^{\dagger} \frac{\partial S}{\partial X} \tag{2}
\end{equation*}
$$

(We measure $G \mathrm{in}$ unts of $2 e^{2} / h$ and $Q \mathrm{in}$ units of e) Grand-canonical averages $\left\rangle_{G C}\right.$ and canonıcal averages $\left\rangle_{C}\right.$ are related by

$$
\begin{equation*}
\left\rangle_{C}=\Delta\langle\quad \times d Q / d E\rangle_{G C}\right. \tag{3}
\end{equation*}
$$

The factor $d Q / d E$ is the Jacobian to go from an average over Q in the canonical ensemble to an average over E in
the grand-canonical ensemble Conductance velocities in the two ensembles are related by

$$
\begin{equation*}
\left.\frac{\partial G}{\partial X}\right|_{Q}=\left.\frac{\partial G}{\partial X}\right|_{E}-\frac{\partial G}{\partial E} \frac{\partial Q}{\partial X}\left(\frac{\partial Q}{\partial E}\right)^{-1} \tag{4}
\end{equation*}
$$

where $\left.\right|_{Q}$ and $\left.\right|_{E}$ indicate, respectively, derivatives at constant Q (canonical) and constant E (grand-canonical) Derivatives $\partial G / \partial V$ with respect to the gate voltage are proportional to $\partial G / \partial Q$ in the canonical ensemble and to $\partial G / \partial E$ in the grand-canonical ensemble (The proportonality coefficients contan elements of the capacitance matrix of the quantum dot plus gates) The two derivatives are related by

$$
\begin{equation*}
\frac{\partial G}{\partial Q}=\frac{\partial G}{\partial E}\left(\frac{\partial Q}{\partial E}\right)^{-1} \tag{5}
\end{equation*}
$$

The problem that we face is the calculation of the joint distribution of $S, \partial S / \partial E$, and $\partial S / \partial X$ In view of the relations (3)-(5) it is sufficient to consider the grandcanonical ensemble This problem is closely related to the old problem [24] of the distribution of the WignerSmith delay times $\tau_{1}, \quad, \tau_{N}$, which are the eigenvalues of the $N \times N$ matrix $-{ }_{i} S^{\dagger} \partial S / \partial E$ (The elgenvalues are real positive numbers) Interest in this problem has been revived in connection with chaotic scattering [25-28] The rates $\gamma_{n}=1 / \tau_{n}$ are distributed according to [28]

$$
\begin{equation*}
P\left(\left\{\gamma_{n}\right\}\right) \propto \prod_{i<j}\left|\gamma_{t}-\gamma_{j}\right|^{\beta} \prod_{k} \gamma_{k}^{\beta N / 2} e^{-\pi \beta \gamma_{k} / \Delta} \tag{6}
\end{equation*}
$$

This distribution is known in random-matrix theory as the Laguerre ensemble, because the correlation functions can be witten as sentes over (generalized) Laguerre polynomı als [29] For $N=1$ we 1ecover the 1esult of Refs [25] and [27] In our case $N=2$

To compute the conductance velocities it is not sufficient to know the delay times τ_{n}, but we also need to know the distribution of the ergenvectors of the time-delay matux $-{ }_{l} S^{\dagger} \partial S / \partial E$ Furthermore, we need the distribution of $-{ }_{l} S^{\dagger} \partial S / \partial X$ The general result contaming this infoimation is [28]

$$
\begin{align*}
& P\left(S, \tau_{L}, \tau_{X}\right) \propto \exp \left[-\beta \operatorname{tr}\left(\frac{\pi}{\Delta} \tau_{E}^{-1}+\frac{\pi^{2} X_{0}^{2}}{4 \Delta^{2}}\left(\tau_{E}^{-1} \tau_{X}\right)^{2}\right)\right] \\
& \times\left(\operatorname{det} \tau_{E}\right)^{-2 \beta N+3(\beta-2) / 2}, \tag{7}\\
& \tau_{E}=-t S^{-1 / 2} \frac{\partial S}{\partial E} S^{1 / 2}, \quad \tau_{X}=-t S^{-1 / 2} \frac{\partial S}{\partial X} S^{-1 / 2} \tag{8}
\end{align*}
$$

The matrix τ_{L} has the same elgenvalues as the time-delay matrix, but it is more convenient because it is uncorrelated with S, while the time-delay matrix is not By integrating out τ_{E} and τ_{X} from Eq (7), we obtain a uniform distribution for S, as expected for a chaotic cavity [30] The resulting distribution of the conductance [31],
$P(G) \propto G^{-1+\beta / 2}$, is the same in the canonical and grandcanonical ensembles, because S and $d Q / d E$ are uncorrelated [cf Eq (3)] By integrating out S, τ_{X}, and the eigenvectors of τ_{E}, we obtain the distribution (6) of the delay times The distribution of τ_{X} at fixed τ_{E} is a Gaussran The scale of this Gaussian is set by the parameter X_{0}, which has no universal value [32]

We are now ready to compute the distribution of the conductance velocities Derivatives with respect to E and Q are related to the delay times by

$$
\begin{align*}
& \frac{\partial G}{\partial E}=c\left(\tau_{1}-\tau_{2}\right) \sqrt{G(1-G)}, \tag{9a}\\
& \frac{\partial G}{\partial Q}=2 \pi c \frac{\tau_{1}-\tau_{2}}{\tau_{1}+\tau_{2}} \sqrt{G(1-G)}, \tag{9b}
\end{align*}
$$

where $c \in[-1,1]$ is a number that depends on the phases of the matrix elements of S and on the eigenvectors of τ_{E}

Its distribution $P(c) \propto\left(1-c^{2}\right)^{-1+\beta / 2}$ is independent of τ_{1}, τ_{2}, and G The derivatıve $\partial G / \partial X$ has a Gaussian distribution at a given value of S and τ_{E}, with zero mean and with variance

$$
\begin{aligned}
& \left\langle\left(\left.\frac{\partial G}{\partial X}\right|_{E}\right)^{2}\right\rangle=\alpha\left[G(1-G) \tau_{1} \tau_{2}+\frac{1}{2}\left(\frac{\partial G}{\partial E}\right)^{2}\right] \\
& \left\langle\left(\left.\frac{\partial G}{\partial X}\right|_{Q}\right)^{2}\right\rangle=\alpha \tau_{1} \tau_{2}\left[G(1-G)-\frac{1}{4 \pi^{2}}\left(\frac{\partial G}{\partial Q}\right)^{2}\right]
\end{aligned}
$$

where we have abbreviated $\alpha=4 \Delta^{2} / \pi^{2} X_{0}^{2} \beta \quad$ Because the variance of $\partial G / \partial X$ depends on $\partial G / \partial E$ or $\partial G / \partial Q$, these conductance velocities are correlated

From the distribution (6) of τ_{1}, τ_{2}, and the independent distributions of G and c, we calculate the joint distribution of G and its (dımensionless) derıvatıves $G_{X}=X_{0} \partial G / \partial X$, $G_{E}=(\Delta / 2 \pi) \partial G / \partial E$, and $G_{Q}=(1 / 2 \pi) \partial G / \partial Q$ The result in the grand-canonical and canonical ensembles is

$$
\begin{align*}
P_{G C}\left(G, G_{E}, G_{X}\right) & =\frac{1}{Z} \int_{0}^{\infty} d x \int_{G_{E}^{2} /[G(1-G)]}^{\infty} d y \frac{\left[y G-G_{E}^{2} /(1-G)\right]^{-1+\beta / 2} x^{-2-2 \beta}}{\sqrt{\pi(x+y) G(1-G) f(x)}} \exp \left[-\frac{2 \beta}{x} \sqrt{x+y}-\frac{G_{X}^{2}}{f(x)}\right] \tag{10a}\\
P_{C}\left(G, G_{Q}, G_{X}\right) & =\frac{2}{Z} \int_{0}^{\infty} d x \int_{G_{Q}^{2} /[G(1-G)]}^{1} d y \frac{\left[y G-G_{Q}^{2} /(1-G)\right]^{-1+\beta / 2} x^{3 \beta}}{(1-y)^{(\beta+3) / 2} \sqrt{\pi G(1-G) g(x)}} \exp \left[-\frac{2 \beta x}{\sqrt{1-y}}-\frac{G_{X}^{2}}{g(x)}\right], \tag{10b}\\
f(x) & =8 \beta^{-1}\left[x G(1-G)+2 G_{E}^{2}\right], \quad g(x)=8\left(x^{2} \beta\right)^{-1}\left[G(1-G)-G_{Q}^{2}\right], \\
Z & =3 \beta^{-3 \beta-1} \Gamma(\beta / 2) \Gamma(\beta) \Gamma(3 \beta / 2) \tag{10c}
\end{align*}
$$

By integrating out G and one of the two derivatives from Eq (10), we obtain the conductance velocity distributions of Fig 1 (The case $\beta=4$ is close to $\beta=2$ and is omitted from the plot for clarity) The distributions have a singulanty at zero denvatıve A cusp for $\beta=2$ and 4, and a logauthmic divergence for $\beta=1$ The tals of the distributions of $\partial G / \partial X$ are algebraic in both ensembles, but with a different exponent,

$$
\begin{align*}
P_{G C}(\partial G / \partial X) & \propto(\partial G / \partial X)^{\beta} 2^{2}, \tag{11d}\\
P_{C}(\partial G / \partial X) & \propto(\partial G / \partial X)^{2 \beta} \tag{11b}
\end{align*}
$$

The distribution of $\partial G / \partial E$ (grand-canonical ensemble) also has an algebract tal $\left[\alpha(\partial G / \partial E)^{-\beta-2}\right]$, while the distribution of $\partial G / \partial Q$ (canomical ensemble) is identically zero for $|\partial G / \partial Q| \geq \pi$ In both ensembles, the second moment of the conductance velocities is finte for $\beta=2$ and 4, but infinite for $\beta=1$ [33]

In conclusion, we have calculated the joint distribution of the conductance G and its parametric derivatives for a chaotic cavity, coupled to electron reservoirs by two single-mode ballistic point contacts The distribution is fundamentally different from the multımode case, being highly non-Gaussian and with correlated denvatıves (Correlations between G and the parametric derivatives
can be transformed away by a change of variables) We account toi Coulomb interactions by using a canonical ensemble instead of a grand-canonical ensemble Our results for the canonical ensemble are relevant for the analysis of recent experiments on chaotic quantum dots, where the conductance G is measured as a function of both the magnetic field and the shape of the quantum dot [8] The grand canonical results are relevant for experiments on microwave cavities $[34,35]$ Together with the theory provided here, such experiments can yield information on the distribution of delay times in chaotic scattering that cannot be obtaned by other means

This problem was suggested to us by C M Marcus We acknowledge support by the Dutch Science Founda tion NWO/FOM and by the European Community (program for the Trainıng and Mobility of Researchers)

[^0][2] B D Simons and B L Altshuler, Phys Rev B 48, 5422 (1993)
[3] Y V Fyodorov, Phys Rev Lett 73, 2688 (1994), Y V Fyodorov and A D Mırlın, Phys Rev B 51, 13403 (1995)
[4] N Tanguchi, A Hashımoto, B D Simons, and B L Altshuler, Europhys Lett 27, 335 (1994)
[5] R M Westervelt, in Nano-Sclence and Technology, edited by G Timp (American Institute of Physics, New York, 1996)
[6] C M Marcus, A J Rimberg, R M Westervelt, P F Hopkins, and A C Gossard, Phys Rev Lett 69, 506 (1992)
[7] A M Chang, H U Baranger, L N Pfeiffer, and K W West, Phys Rev Lett 73, 2111 (1994)
[8] I H Chan, R M Clarke, C M Marcus, K Campman, and A C Gossard, Phys Rev Lett 74, 3876 (1995)
[9] R A Jalabert, H U Baranger, and A D Stone, Phys Rev Lett 65, 2442 (1990)
[10] Z Pluhar̆, H A Werdenmuller, J A Zuk, and C H Lewenkopf, Phys Rev Lett 73, 2115 (1994)
[11] K B Etetov, Phys Rev Lett 74, 2299 (1995)
[12] K Frahm, Europhys Lett 30, 457 (1995)
[13] K Frahm and J-L Pichard, J Phys I (France) 5, 877 (1995)
[14] J Rau, Phys Rev B 51, 7734 (1995)
[15] A M S Macêdo, Phys Rev B 53, 8411 (1996)
[16] M Buttiker, J Phys Condens Matter 5, 9361 (1993)
[17] M Buttıker and T Christen, in Quantum Transport in Semiconductor Submicron Structures, edited by B Kramer, NATO ASI Ser E, Vol 326 (Kluwer, Dordrecht, 1996)
[18] H -F Cheung, Y Gefen, E K Riedel, and W -H Shih, Phys Rev B 37, 6050 (1988)
[19] H Bouchıat and G Montambaux, J Phys (Parıs) 50, 2695 (1989)
[20] B L Altshuler, Y Gefen, and Y Imry, Phys Rev Lett 66, 88 (1991)
[21] A Kamenev and Y Gefen, Phys Rev B 49, 14474 (1994)
[22] The difference between canonical and grand-canonical averages which we find is related, but not identical, to the effects of the Coulomb blockade predicted by I L Alemer and L I Glazman, Report No cond-mat/9612138
[23] C W J Beenakker, Report No cond-mat/9612179
[24] E P Wigner, Phys Rev 98, 145 (1955), F T Smıth, Phys Rev 118, 349 (1960)
[25] Y V Fyodorov and H -J Sommers, Phys Rev Lett 76, 4709 (1996), J Math Phys 38, 1918 (1997)
[26] P Šeba, K Zyczkowskı, and J Zakrewskı, Phys Rev E 54, 2438 (1996)
[27] V A Gopar, P A Mello, and M Buttiker, Phys Rey Lett 77, 3005 (1996)
[28] P W Brouwer, K M Frahm, and C W J Beenakker, Phys Rev Lett 78, 4737 (1997)
[29] T Nagao and K Slevin, J Math Phys 34, 2075 (1993), T Nagao and P J Forrester, Nucl Phys B435, 401 (1995)
[30] R Blumel and U Smilansky, Phys Rev Lett 60, 477 (1988)
[31] H U Baanger and P A Mello, Phys Rev Lett 73, 142 (1994), R A Jalabert, J -L Pichaıd, and C W J Beenakker, Europhys Lett 27, 255 (1994)
[32] If X represents the magnetic flux through the quantum dot, then $X_{0}=(h / e)\left(\tau_{\text {crgodic }} / \tau_{\mathrm{H}}\right)^{1 / 2}$, where τ_{H} is the Heisenberg time of the quantum dot and $\tau_{\text {cigodic }} \ll \tau_{\mathrm{H}}$ is the time scale for ergodic exploration of the avallable phase space
[33] The algebrac tails of the distributions of $\partial G / \partial E$ and $\partial G / \partial X$, and hence the divergencies of the second moments, are cut off by thermal smeaung or inelastic scattering at $\left(X_{0} / \Delta\right) \partial G / \partial X \sim \partial G / \partial E \sim \min \left(\tau_{\phi}, 1 / k T\right)$, where τ_{ϕ} is the dephasing time and T the temperature At the same tume, the cusp near zero derivative is rounded off The bulk of the distribution remains unchanged as long as $\max \left(1 / \tau_{\phi}, k T\right) \leq \Delta$
[34] J Steın, H -J Stockmann, and U Stoffregen, Phys Rev Lett 75, 53 (1995)
[35] A Kudroll, V Kıdambı, and S Sirdhar, Phys Rev Lett 75, 822 (1995)

[^0]: ${ }^{+}$Present address Laboratore de Physıque Quantıque, UMR 5626 du CNRS, Universite Paul Sabatier, 31062 Toulouse Cedex 4, Fiance
 [1] B L Altshuler and B D Simons, in Mesoscopic Quantum Physucs edited by E Akkermans, G Montambaux, J-L Pıchard, and J Zinn Justın (North-Holland, Amsterdam, 1995)

