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Thermopower of single-channel disordered and chaotic conductors
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We show (analytically and by numerical simulation) that the zero-temperature limit of the
distribution of the thetmopower S of a one-dimensional disordered wire 1n the localized
regime 1s a Lorentzian, with a disorder-independent width of 4n3ké T /3eA (where T 1s the
temperature and A the mean level spacing) Upon raising the temperature the distribution
crosses over to an exponential form o< exp(—2|S[e7/A) We also consider the case of a
chaotic quantum dot with two single channel ballistic point contacts The distribution of S
then has a cusp at S = O and a tail o< |S| ' #1In|S]| for large S (with B = 1, 2 depending
on the presence o1 absence of time revetsal symmetry)
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1. Introduction

Thermo-electric transpoit propetties of conductors probe the energy dependence of the scattering processes
Iimiting conduction At low temperatwmes and 1n small (mesoscopic) systems, elastic impurity scattering 1s
the dommant scattering process The eneigy dependence of the conductance 1s then a quantum 1nteiference
effect [1] The dertvative dG/d E of the conductance with 1espect to the Fermi ene1gy 1s measured by the
thetmopower S, defined as the 1atio —AV /AT of a (small) voltage and tempeiatuie difference applied over
the sample at zero electiic current Experimental and theoretical studies of the thermopower exist for several
mesoscopic devices One finds a seties of sharp peaks 1n the thermopower of quantum point contacts [2],
apettodic fluctuations m diffusive conductors [3], sawtooth oscillations 1 quantum dots m the Coulomb
blockade 1egime [4], and Aharonov—Bohm oscillations 1 metal 1ings [5]

Heie we study the statistical distribution of the thermopower m two different systems, not considered
previously A disordeted wite 1n the localized 1egime and a chaotic quantum dot with ballistic point contacts
A single transmitted mode 1s assumed 1n both cases In the disoideted wire, conduction takes place by resonant
tunnelling through localized states The resonances ate very narrow and appear at uncoirelated energies The
distributions of the thermopower and the conductance ate both bioad, but otherwise quite different instead
of the log normal distiibution of the conductance [1] we find a Lorentzian distuibution for the thermopower
In the quantum dot, the resonances ate corielated and the widths aie of the same order as the spacings The
cottelations are desciibed by tandom-matrix theory {6, 7], undet the assumption that the classical dynamics
1n the dot 18 chaotic The theimopowet distitbution 1n this case follows from the distiibution of the time delay
matrix found recently [8]
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The thermopower (at temperature 7" and Fermi energy EF) is given by the Cutler—Mott formula [9, 10]

| [dE(E — Ex)G(E)df/dE
S=—— , (1
eT  [dEG(E)f/dE

where G is the zero-temperature conductance and f is the Fermi-Dirac distribution function. In the limit
T — 0Oeqn (1) simplifies to

= -2 2)

where G and dG/dE are to be evaluated at £ = Ep. We consider mainly the zero-temperature limit of the
thermopower, by studying the dimensionless quantity
A dG
T 271G dE’
Here A is the mean level spacing near the Fermi energy. Since we are dealing with single-channel conduction,
the conductance is related to the transmission probability 7 (E) by the Landauer formula [1, 11]

2 2
G(E) = —]?T(E). (4)

3)

The problem of the distribution of the thermopower is therefore a problem of the distribution of the logarithmic
derivative of the transmission probability.

2. Disordered wire

In this section we study a disordered single-mode wire of length L much greater than the mean free path
[. This is the localized regime. We compute the thermopower distribution in the zero-temperature limit. The
analytical theory is tested by comparing with a numerical simulation. The effect of a finite temperature is
considered at the end of the section. Electron—electron interactions play an important role in one-dimensional
conduction, but we do not take these into account here.

2.1. Analytical theory

The localization length &£ (E) (which is of order / and is defined by lim; oo L™ InT(E) = —2/£(E)) and
the density of states p(E) (per unit of length in the limit L — oo) are related by the Herbert—Jones—Thouless
formula [12]

1

£(E)
The additive constant is energy independent on the scale of the level spacing. Equation (5) follows from the
Kramers—Kronig relation between the real and imaginary parts of the wavenumber (the real part determining
p, the imaginary part &). Neglecting the width of the resonances in the large-L limit, the density of states
p(E) = L™" ", 8(E — E;) is a sum of delta functions, and thus

LA d 1 A 1
go_tAd 1 A5 1 (©)

m dEE(E) 7w & Ei — Ep

/dE p(ENIn|E — E’| 4 constant. (5)

In the localized regime the energy levels E; are uncorrelated, and we assume that they are uniformly
distributed in a band of width B around Eg. To obtain the distribution of o,

B2 dE; A 1
P(o) = H/ ("‘;/ZE) @)

B2 B y

-y
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we first compute the Fourier transform

00 L B/A
Pk) = / do elkUP(a) — | = / dE eIkA/JrE - e_”“, )
-0 B J_ pn

where the limit B/A — oo is taken in the last step. Inverting the Fourier transform, we find that the
thermopower distribution is a Lorentzian,

1/m
1402
The “full width at half maximum’ of P (o) is equal to 2, hence 1t is equal to 47r3k123 T/3eA for P(S). This

width depends on the length L of the system (through A o 1/L), but it does not depend on the mean free
path / (as long as [ « L, so that the system remains in the localized regime).

P(o) = &)

2.2. Numerical simulation

In order to check the analytical theory, we performed a numerical simulation using the tight-binding

Hamiltonian
w

f
H==2 ) (el +eje )+ ) Ve, (10)
J J

The disordered wire was modelled by a chain of lattice constant &, with a random impurity potential V, at
each site drawn from a Gaussian distribution of mean zero and variance 1. The localization length of the
wire is given by & = 2(a/u*)(w? — E}) [13]. We have chosen u = 0.075w, Ep = —0.55w, such that
& = 248 g, much smaller than L = 8000 a. From the scattering matrix we obtained the conductance via
the Landauer formula (4), and then the (dimensionless) thermopower via eqn (3) (with A = 3.3 x 107* w).
The differentiation with respect to energy was carried out numerically, by repeating the calculation at two
closely spaced values of Er. As shown 1n Fig. 1, the agreement with the analytical result is good without any
adjustable parameters.

2.3. Finite temperatures

Our derivation of the Lorentzian distribution of the thermopower holds if the temperature is so low that kg T
is small compared to the typical width y of the transmission resonances. Whatif kg7 > y, butstill kg7 << A
(so that the discreteness of the spectrum remains resolved)? We will show that the distribution crosses over
to an exponential, but in a highly nonuniform way.

Consider arbitrary ¥ and kg7, both <« A. The Cutler—Mott formula (1) is dominated by two contributions,
one from a peak in df/dE of width kgT around Ep and one from a peak in G(E) of width y, around Ej.
Here yy and Ey are the width and position of the level closest to Ep. If |Er — Eg| > max (kg7 1), the two
peaks do not overlap and one can estimate the thermopower as

) —1
_ 1 [ 7 yo(kpT) n Lr — Eoe~|E,~Eo|//»BT] [_._VO__ LelEF—Eol/kBT} . ap

T eT | 3(Ep — Ep)3 kg T 27 (Ep — Eg)? * kgT

If kT < o, the first terms in the numerator and denominator dominate over the second terms. This is the
regime that the Lorentzian distribution (9) holds for all S.

We now turn to the regime kg7 > yy. The first terms dominate if |Eg — Eg| > kg7 InkgT/yy. Hence
P(S) is a Lorentzian for | S| « (kg/e)(InkgT/yo)~". The logarithm of kg T /¥y can be quite large, because
the width of the levels is exponentially small in the system size, y ~ e~%/%. The Lorentzian persists in an
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Fig. 1. Dastribution of the dimensionless thermopowei o = (A /2m)d In T'(E) /d E for a one dimensional wiie m the localized tegime
The histogram 15 obtained from a numerical simulation for a sample Iength L = 32 3& The dashed cutve 1s the Loientzian (9) being
the analytical 1esult for L 3> £ The mnset shows the algebraic tail of the distribution on a logatithmic scale The thetmopower S 1 the
zero temperature hmit 1s 1elated to o by S = —(27°/3) (kﬁ T/eA)o

interval larger than its width, provided kg7 < A(InkgT/ v0)~" The second terms 1n eqn (11) dommate 1f
kT <« |Ep — Eg| < kgT InkgT /vy In this case the thermopower 1s simply S = (Er — Eg)/eT, with
exponential distribution

T
P(S) = e WeT/e (12)

The distribution (12) follows because the energy levels are uncorielated, so that the spacing | Er — Eg| has an
exponential distribution with a mean of A /2

We conclude that the thermopower distiibution for y < kg7 < A contains both Lotentzian and exponential
contributions The peak region |S| < (kg/e) (InkgT/ )/)_1 1s the Lorentzian (9) The intetmediate 1egion
(kg/e) InkgT/y) ' <« |S| « (kg/e)InkgT /v 1s the exponential (12) The far tails |S| > (kg/e)InkgT/y
cannot be explained by eqn (11) With mcieasing temperature, the Lotentzian peak region shiinks, and
ultimately the exponential region starts 11ight at S = O Thus applies to the temperature 1ange A (InkgT/y)~" <
kT < A

To 1llustrate these various regimes, we computed P (S) numerically from eqn (1) We took the density of
states

- vi/2m
PE =L D R 0

i

so that the conductance according to eqn (5) has the energy dependence

G(E) o« [[[(E—E)? +v2/4]" (14)
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Fig. 2. Thermopower distuibution of a one-dimensional wire 1n the localized regime at fimte tempeiature The histogram 1s obtamed
fiomeqns (1) and (14), by numetical ntegiation for a set ot tandomly chosen energy levels E, , all having the same width y, = y = 107%A
The temperatuie 1s kg7 /A = 001, such that y « kg7 <« A The distibution follows the Lorentzian (9) (sohd curve) for small and
large S, but it follows the exponential (12) (dashed cuive) i an mtermediate 1egion

The levels E, were chosen uniformly and independently (mean spacing A), but the fluctuations of the widths
y, were ignored (y, = y for all /). Such fluctuations are wrrelevant in the low-temperature limit kg7 < y, but
notfory < kg7 <« A. We believe that ignoring fluctuations in y, should still be a reasonable approximation,
because yy appears only in logarithms. The resulting P (S) is plotted in Fig. 2. We see the expected crossover
from a Lorentzian to an exponential. The exponential region appears as a plateau. Beyond the exponential
region, the distribution appears to return to the Lorentzian form. We have no explanation for this far tail.

3. Chaotic quantum dot

In this section we consider a chaotic quantum dot with single-channel ballistic point contacts (see Fig. 3,
inset). Because there are no tunnel barriers in the point contacts, the effects of the Coulomb blockade are
small and here we ignore them altogether. For this system, the distribution of 4T /d E was computed recently
from random-matrix theory [8]. The energy derivative of the transmission probability has the parametrization

aTr c
——={u—-w)yT1l-T), (15)
dE h
with independent distributions
P(c) oc (1 — H)7IHA2 le] <1, (16)
P(t), ) o |11 — 1| (zy 1) PN/ ml/mamph/ A T, 72 > 0, a7
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Fig. 3. Distribution of the dimensionless thermopower of a chaotic cavity with two single-channel ballistic pomt contacts (inset),
computed from eqn (19) for the case of broken (8 = 2) and unbroken (8 = 1) time-reversal symmetry

P(T) o T~1HA/2, 0<T <1. (18)

The integer § equals 1 or 2, depending on whether time-reversal symmetry is present or not. The times 71, 7,
are the eigenvalues of the Wigner—Smith time-delay matrix (see [8, 14]). Their sum t; + 7, is the density of
states (multiplied by 27r%). The thermopower distribution follows from

1 (e} [o's) 1
P(o)cx/ ch(c)[ dn/ dt P(rl,rz)/ dT P(T)
~1 0 0 0
X (71 + 12)8 ((7 — (A2 e(n) — w)T)T = 1). (19)

Asin [8, 15], the density of states appears as a weight factor ) + 1; in the ensemble average (19), because the
ensemble is generated by uniformly varying the charge on the quantum dot rather than its Fermi energy. This is
the correct thing to do in the Hartree (self-consistent potential) approximation. A more sophisticated treatment
of the electron—electron interactions (as advocated in [16]) does not yet exist for this problem. The resulting
distributions are plotted in Fig. 3. The curves have a cusp at o = 0, and asymptotes P (o) o [o|~'"#In|o|
for |o| > 1.

4. Conclusion

The results we have reported hold for single-channel conductors. The generalization to multi-channel
conductors is of interest. Multi-channel diffusive conductors were studied in [3]. For a chaotic cavity with
ballistic point contacts having a large number of modes (N modes per point contact), the distribution of the

~—
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thermopower 1s Gaussian The mean 1s ze10 and the variance 1s
4726
kgT m
9e? N*AB

(We have used the results of [17] ) Analogously to umversal conductance fluctuations, the variance of the
thermopower 1s 1educed by a factor of 2 upon breaking time-reversal symmetry (8 =1 — 8 = 2)

For an N-mode wire 1n the localized 1egime, our derivation of the exponential distribution of the ther-
mopower temains valid This 1s not true for the Lorentzian distribution The reason 1s that the Herbert—Jones—
Thouless formula for N > 1 1elates the denstty of states to the sum of the inverse localization lengths, [18] and
there 1s no simple relation between this sum and the thermopower We expect that the tail of the distribution
remains quadiatic, P(S) o« S~2—because of the argument of Section 2 3, which 1s still vahd for N > 1 Ttre
mains a challenge to determine analytically the entire thetmopower distribution of a multi channel disoidered
wite

Vai § = (20)
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