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Thermopower of single-channel disordered and chaotic conductors
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We show (analytically and by numencal Simulation) that the zero-tempeiature limit of the
distnbution of the theimopower S of a one-dimensional disordeied wire in the locahzed
regime is aLorentzian, with adisoider-mdependent width of 4n3k^T/3eA (where T is the
temperature and Δ the mean level spacmg) Upon laismg the temperature the distnbution
ciosses over to an exponential foim oc exp(—2\S\eT/A) We also considei the case of a
chaotic quantum dot with two smgle channel balhstic pomt contacts The distnbution of S
then has a cusp at S = 0 and a tail oc |5| ' ^ In |5| foi large S (with β = l , 2 depending
on the presence 01 absence of time revei sal symmetry)

© 1998 Academic Piess Limited

Key words: thermo electuc phenomena, locahzation, quantum chaos

1. Introduction

Thermo-electnc transpoit propeities of conductois probe the energy dependence of the scattenng processes
limitmg conduction At low temperatmes and in small (mesoscopic) Systems, elastic impunty scattermg is
the dominant scattenng piocess The eneigy dependence of the conductance is then a quantum inteifeience
effect [1] The derivative dG/dE of the conductance with lespect to the Fermi eneigy is measured by the
theimopower S, defined äs the latio — Δ V/ΔΓ of a (small) voltage and tempeiatuie difference applied ovei
the sample at zero electiic current Expeiimental and theoretical studies of the thermopower exist foi seveial
mesoscopic devices One finds a senes of sharp peaks m the thermopowei of quantum pomt contacts [2],
apenodic fluctuations in diffusive conductors [3], sawtooth oscillations m quantum dots in the Coulomb
blockade legime [4], and Aharonov-Bohm oscillations in metal nngs [5]

Heie we study the statistical distnbution of the thermopower in two diffeient Systems, not consideied
previously A disordeied wiie in the locahzed legime and a chaotic quantum dot with balhstic pomt contacts
A smgle transmitted mode is assumed in both cases In the disoideied wiie, conduction takes place by resonant
tunnellmg through locahzed states The resonances aie veiy narrow and appear at uncoirelated energies The
distubutions of the thermopowei and the conductance aie both bioad, but otherwise quite diffeient mstead
of the log normal distnbution of the conductance [1] we find a Lorentzian distnbution for the thermopowei
In the quantum dot, the resonances aie corielated and the widths aie of the same ordei äs the spacmgs The
coiielations are descnbed by landom-matrix theory [6, 7], undei the assumption that the classical dynamics
m the dot is chaotic The theimopowei distnbution in this case follows from the distnbution of the time delay
matnx found recently [8]
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The thermopower (at temperature T and Fermi energy Ep) is given by the Cutler-Mott formula [9, 10]

l fdE(E-EP)G(E)df/dE

eT fdEG(E)df/dE

where G is the zero-temperature conductance and / is the Fermi-Dirac distribution function. In the limit
T —> 0 eqn (1) simplifies to

n2klTdG
~ ö /-•""Je·'' ( '3 eG dE

where G and dG/dE are to be evaluated at E = Ep. We consider mainly the zero-temperature limit of the
thermopower, by studying the dimensionless quantity

Δ dG
0- = —-— — . (3)

2nG dE
Here Δ is the mean level spacing near the Fermi energy. Since we are dealing with single-channel conduction,
the conductance is related to the transmission probability T (E) by the Landauer formula [l, 11]

2e2

G(E) = —T (E). (4)
h

The problem of the distribution of the thermopower is therefore a problem of the distribution of the logarithmic
derivative of the transmission probability.

2. Disordered wire

In this section we study a disordered single-mode wire of length L much greater than the mean free path
/. This is the localized regime. We compute the thermopower distribution in the zero-temperature limit. The
analytical theory is tested by comparing with a numerical Simulation. The effect of a finite temperature is
considered at the end of the section. Electron-electron interactions play an important role in one-dimensional
conduction, but we do not take these into account here.

2.1. Analytical theory

The localization length ξ (E) (which is of order / and is defined by limL-+oo ΖΛ1 In T (E) = —2/£(E)) and
the density of states p (E) (per unit of length in the limit L —> oo) are related by the Herbert-Jones-Thouless
formula [12]

= / dE'p(E') In \E - E'\ + constant.

The additive constant is energy independent on the scale of the level spacing. Equation (5) follows from the
Kramers-Kronig relation between the real and imaginary parts of the wavenumber (the real part determining
p, the imaginary part ξ). Neglecting the width of the resonances in the large-L limit, the density of states
p (E) — L~] 22,· δ (E — EI) is a sum of delta functions, and thus

_ LA d l _ Δ ^p l
σ ~ ^~άΕξ(Ε) ~~ ~π ^"E, - Ep' (

In the localized regime the energy levels E,· are uncorrelated, and we assume that they are uniformly
distributed in a band of width B around Ep. To obtain the distribution of σ,

-n/
^ d E , ( Δ ̂  l

-B/2 B
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we first compute the Fourier transform

-B β -]«/Δ

P(k)= l άσ^σΡ(σ) = \- l dEe'kA/JTE\ = e-
|t|, (8)

/•oo Γ ι fB/2 -i

= l άσ£ΛσΡ(σ) = \- άΕ&^/πΕ

J-oo L B J-B/2 J

where the limit 5/Δ — > oo is taken in the last step. Inverting the Fourier transform, we find that the
thermopower distribution is a Lorentzian,

. (9)

The 'füll width at half maximum' of P (σ) is equal to 2, hence it is equal to 4n3k%T/3eA for P (S). This
width depends on the length L of the System (through Δ oc l /L), but it does not depend on the mean free
path / (äs long äs / <C L, so that the system remains in the locahzed regime).

2.2. Numerical Simulation

In order to check the analytical theory, we performed a numerical Simulation usmg the tight-binding
Hamiltonian

The disordered wire was modelled by a chain of lattice constant a, with a random impurity potential Vj at
each site drawn from a Gaussian distribution of mean zero and variance u1. The localization length of the
wire is given by ξ = 2(a/u2)(w2 - E2,) [13]. We have chosen u = 0.075 ω, £F = — 0.55 w, such that
ξ = 248 a, much smaller than L — 8000 a. From the scattering matrix we obtained the conductance via
the Landauer formula (4), and then the (dimensionless) thermopower via eqn (3) (with Δ = 3.3 χ 10~4 w).
The differentiation with respect to energy was carried out numerically, by repeating the calculation at two
closely spaced values of Ep. As shown in Fig. l, the agreement with the analytical result is good without any
adjustable parameters.

2.3. Finite temperatures

Our derivation of the Lorentzian distribution of the thermopower holds if the temperature is so low that k% T
is small compared to the typical width γ of the transmission resonances. What if k% T > γ, but still feß T <<C Δ
(so that the discreteness of the spectrum remains resolved)? We will show that the distribution crosses over
to an exponential, but in a highly nonuniform way.

Consider arbitrary γ and kBT, both <ίί Δ. The Cutler-Mott formula (1) is dominated by two contributions,
one from a peak in df/dE of width kBT around EF and one from a peak in G (E) of width γ0 around E0.
Here γ0 and E0 are the width and position of the level closest to Ep. If \EP — E0\ > max (kBT, γο), the two
peaks do not overlap and one can estimate the thermopower äs

ύ — ~77; 777; 7777 ~i
eT |_3(£F-£0)

3 kBT J \_2π(ΕΡ - £0)
2

If kBT 4C γο, the first terms in the numerator and denominator dominate over the second terms. This is the
regime that the Lorentzian distribution (9) holds for all S.

We now turn to the regime k^T > γο. The first terms dominate if £p — ΈΟ! ^> k^T lnkßT/γο. Hence
P(S~) is a Lorentzian for |5Ί <5C (^B/e)(ln^B^/Xo)^1· The logarithm of kßT/γο can be quite large, because
the width of the levels is exponentially small in the System size, γ ~ Q~L^ . The Lorentzian persists in an
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Fig. 1. Distribution of the dimensionless thei mopowei σ = (Δ/2ττ)ίί In T(E)/dE for a one dimcnsional wue m the localued legime
The lustogram is obtained fiom a numencal Simulation Γοι a sample length L = 32 3 ξ The dashed cuive is the Loientzian (9) being
the analytical jesult for L 3> ξ The mset shows the algebraic tail ot the distnbution on a loganthmic scale The thei mopowei S m the
zero tempeiatuie hmit is lelated to σ by S = — (2

mterval larger than its width, provided k^T < A(ln/CB77yo) ' The second terms in eqn (11) dommate if
k?,T «; \Ef - E0\ <£ kBT\nkBT/YQ In this case the thermopower is simply 5 — (£F - E0)/eT, with
exponential distnbution

P(S) = -c (12)

The distnbution (12) follows because the energy levels are unconelated, so that the spacmg \Ep — E0\ has an
exponential distnbution with a mean of Δ /2

Weconclude that the thermopower distnbution for γ < k%T <g; Δ contamsbothLoientzian and exponential
contributions The peak region |5| <Si (kzje) (\nkBT/y)~l is the Lorentzian (9) The mteimediate legion
(kB/e)(lnkBT/yri « |5| « (lcB / e) \n kBT / γ is the exponential (12) Thefartails |5| » (kB/e)lnkET/y
cannot be explamed by eqn (11) With mcieasmg temperatuie, the Loientzian peak region shnnks, and
ultimately the exponential region Starts i ightat S = 0 ThisapphestothetemperatureiangeA (]r\kBT/y)~l <
k-Β,Τ «; Δ

To illustrate these vanous regimes, we computed P (S) numencally from eqn (1) We took the density of
states

_i γ^ Υι/2π
~ L / , 77; _ ,9 , _ _ T ,. > (13)

so that the conductance according to eqn (5) has the energy dependence

(14)
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Fig. 2. Thermopowei distubution of a one-dimcnsional wire m the localized legime at finite tempeiatiue The histogiara is obtamed
fiomeqns(l) and (l 4), bynumencalmtegiationfoi asetof landomlychosenenergy levelsß,, allhavmgthesame widthy, = γ = 10~6Δ
The tempeiatiue is kgT/Δ = 0 01, such that γ <iC ksT <sc Δ The dislnbution follows the Lorentzian (9) (solid curve) foi small and
latge 5, but it follows the exponenlial (12) (dashed cuive) m an mteimediate legion

The levels E, were chosen uniformly and independently (mean spacing Δ), but the fluctuations of the widths
γ, were ignored (γ, = γ for all /). Such fluctuations are irrelevant in the low-temperature limit k^T <^ γ, but
not for γ < kßT <ä=C Δ. We believe that ignoring fluctuations in γ, should still be a reasonable approximation,
because yo appears only in logarithms. The resulting P (S) is plotted in Fig. 2. We see the expected crossover
from a Lorentzian to an exponential. The exponential region appears äs a plateau. Beyond the exponential
region, the distribution appears to return to the Lorentzian form. We have no explanation for this far tail.

3. Chaotic quantum dot
In this section we consider a chaotic quantum dot with single-channel balhstic point contacts (see Fig. 3,

inset). Because there are no tunnel barriers in the point contacts, the effects of the Coulomb blockade are
small and here we ignore them altogether. For this System, the distribution of dT/dE was computed recently
from random-matrix theory [8]. The energy derivative of the transmission probability has the parametrization

dT
- 7), (15)

dE

with independent distributions

P ( T i , r 2 ) o c | r , -T2|

\c\ <

e~(1· T\ , Τ2 > Ο,

(16)

(17)
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Fig. 3. Distribution of the dimensionless thermopowei of a chaotic cavity with two single-channel balhstic point contacts (inset),
computed from eqn (19) for the case of broken (ß = 2) and unbroken (ß = ]') time-reversal symmetry

P(T) <xT~>+ß/2, 0 < T < 1. (18)

The integer ß equals l or 2, depending on whether time-reversal symmetry is present or not. The times τ ι , τ2

are the eigenvalues of the Wigner-Smith time-delay matrix (see [8, 14]). Their sum τ\ + τ2 is the density of
states (multiplied by 2nfi). The thermopower distribution follows from

/

l /ΌΟ /»OO /> I

dcP(c) Ι άτι Ι άτ2Ρ(τι,τ2) Ι άΤ Ρ (Τ)
- i Jo Jo Jo

x(r, + T2)S (σ - (Δ/2πΚ)ο(τι - τ2)λ/1/Γ - Λ . (19)

As in [8, 15], the density of states appears äs a weight factor τι + τ2 in the ensemble average (19), because the
ensemble is generated by uniformly varying the Charge on the quantum dot rather than its Fermi energy. This is
the correct thing to do in the Hartree (self-consistent potential) approximation. A more sophisticated treatment
of the electron-electron interactions (äs advocated in [16]) does not yet exist for this problem. The resulting
distributions are plotted in Fig. 3. The curves have a cusp at σ = 0, and asymptotes P (σ) oc \a\~[~ß In \σ\
for σ »1.

4. Conclusion

The results we have reported hold for single-channel conductors. The generalization to multi-channel
conductors is of interest. Multi-channel diffusive conductors were studied in [3]. For a chaotic cavity with
ballistic point contacts having a large number of modes (N modes per point contact), the distribution of the
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thermopower is Gaussian The mean is zeio and the vanance is

Z-4 T2 6
<20)

(We have used the results of [17] ) Analogously to universal conductance fluctuations, the vanance of the
thermopowei is leduced by a factor of 2 upon breaking time-reveisal symmetry (ß — l -> β = 2)

For an TV-mode wire m the localized icgime, our derivation of the exponenüal distnbution of the ther-
mopower lemams vahd This is not true for the Lorentzian distnbution The reason is that the Heibert-Jones-
Thouless foi mula for N > 1 1 elates the density of states to the sum of the mverse locahzation lengths, [18] and
there is no simple relation between this sum and the thermopowei We expect that the tail of the distnbution
remams quadiatic, P (S) oc S~2 — because of the argument of Section 2 3, which is still vahd for N > l It re
mains a challenge to determme analytically the entne theimopower distnbution of a multi channel disoidered
wne
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