121 research outputs found
Hybrid polarizing solids for pure hyperpolarized liquids through dissolution dynamic nuclear polarization
Hyperpolarization of substrates for magnetic resonance spectroscopy (MRS) and imaging (MRI) by dissolution dynamic nuclear polarization (D-DNP) usually involves saturating the ESR transitions of polarizing agents (PAs; e.g., persistent radicals embedded in frozen glassy matrices). This approach has shown enormous potential to achieve greatly enhanced nuclear spin polarization, but the presence of PAs and/or glassing agents in the sample after dissolution can raise concerns for in vivo MRI applications, such as perturbing molecular interactions, and may induce the erosion of hyperpolarization in spectroscopy and MRI. We show that D-DNP can be performed efficiently with hybrid polarizing solids (HYPSOs) with 2,2,6,6-tetramethyl-piperidine-1-oxyl radicals incorporated in a mesostructured silica material and homogeneously distributed along its pore channels. The powder is wetted with a solution containing molecules of interest (for example, metabolites for MRS or MRI) to fill the pore channels (incipient wetness impregnation), and DNP is performed at low temperatures in a very efficient manner. This approach allows high polarization without the need for glass-forming agents and is applicable to a broad range of substrates, including peptides and metabolites. During dissolution, HYPSO is physically retained by simple filtration in the cryostat of the DNP polarizer, and a pure hyperpolarized solution is collected within a few seconds. The resulting solution contains the pure substrate, is free from any paramagnetic or other pollutants, and is ready for in vivo infusion
Methyltriphenylphosphonium Methylcarbonate, an All-In-One Wittig Vinylation Reagent
The methyltriphenylphosphonium methylcarbonate salt [Ph3 PCH3 ][CH3 OCO2 ], obtained directly by quaternarization of triphenylphosphine with dimethylcarbonate, is a latent ylide that promotes Wittig vinylation of aldehydes and ketones. Alkenes are obtained simply by mixing [Ph3 PCH3 ][CH3 OCO2 ] and the carbonyl and heating in a solvent (no base, no halides, and no inorganic byproducts). Deuterium exchange experiments and the particularly short anion-cation distance measured by XRD in [Ph3 PCH3 ][CH3 OCO2 ] allowed to explain the nature and reactivity of this species. Green chemistry metrics (atom economy, mass index, environmental factor) indicate that this vinylation procedure is more efficient than comparable ones. Deuterated [Ph3 PCD3 ][CH3 OCO2 ] promoted the synthesis of deuterated olefins
An in situ reduction approach to organophosphorus catalysis
Contains fulltext :
107694.pdf (publisher's version ) (Open Access)Radboud Universiteit Nijmegen, 19 juni 2013Promotor : Rutjes, F.P.J.T.
Co-promotor : Delft, F.L. van144 p
- …