207 research outputs found

    Substituent effects on energetics and crystal morphology modulate singlet fission in 9,10-bis(phenylethynyl)anthracenes

    Get PDF
    Singlet fission (SF) converts a singlet exciton into two triplet excitons in two or more electronically coupled organic chromophores, which may then be used to increase solar cell efficiency. Many known SF chromophores are unsuitable for device applications due to chemical instability or low triplet state energies. The results described here show that efficient SF occurs in derivatives of 9,10-bis(phenylethynyl)anthracene (BPEA), which is a highly robust and tunable chromophore. Fluoro and methoxy substituents at the 4- and 4′-positions of the BPEA phenyl groups control the intermolecular packing in the crystal structure, which alters the interchromophore electronic coupling, while also changing the SF energetics. The lowest excited singlet state (S1) energy of 4,4′-difluoro-BPEA is higher than that of BPEA so that the increased thermodynamic favorability of SF results in a (16 ± 2 ps)−1 SF rate and a 180% ± 16% triplet yield, which is about an order of magnitude faster than BPEA with a comparable triplet yield. By contrast, 4-fluoro-4′-methoxy-BPEA and 4,4′-dimethoxy-BPEA have slower SF rates, (90 ± 20 ps)−1 and (120 ± 10 ps)−1, and lower triplet yields, (110 ± 4)% and (168 ± 7)%, respectively, than 4,4′-difluoro-BPEA. These differences are attributed to changes in the crystal structure controlling interchromophore electronic coupling as well as SF energetics in these polycrystalline solids

    Design principles for efficient singlet fission in anthracene-based organic semiconductors

    Get PDF
    Singlet fission (SF) in two or more electronically coupled organic chromophores converts a high-energy singlet exciton into two low-energy triplet excitons, which can be used to increase solar cell efficiency. Many known SF chromophores are unsuitable for device applications due to chemical instability and low triplet state energies. This work summarizes structurally dependent SF dynamics for 9,10-bis(phenylethynyl)anthracene (BPEA) and its derivatives in the solid-state using time-resolved optical spectroscopies, and electronic structure calculations. By modulating the packing structure in thin films, we can effectively tune electronic energy and coupling. The systematic study in BPEA organic semiconductors shows that maximizing the thermodynamic driving force can achieve the highest SF rate and efficiency

    Present and Future of Surface-Enhanced Raman Scattering.

    Get PDF
    The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article

    A Highly Sensitive and Selective Surface-Enhanced Nanobiosensor

    No full text
    Nanosphere lithography (NSL) derived triangular Ag nanoparticles were used to create an extremely sensitive and specific optical biological and chemical nanosensor. Using simple UV-vis spectroscopy, biotinylated surface-confined Ag nanoparticles were used to detect streptavidin down to one picomolar concentrations. The system was tested for nonspecific binding interactions with bovine serum albumin and was found to display virtually no adverse results. The extremely sensitive and selective response of the Ag nanoparticle sensor indicates an exciting use for biological and chemical sensing

    Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy †

    No full text
    • …
    corecore