38 research outputs found

    Controlling the pandemic during the SARS-CoV-2 vaccination rollout

    Get PDF
    © The Author(s) 2021. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.There is a consensus that mass vaccination against SARS-CoV-2 will ultimately end the COVID-19 pandemic. However, it is not clear when and which control measures can be relaxed during the rollout of vaccination programmes. We investigate relaxation scenarios using an age-structured transmission model that has been fitted to age-specific seroprevalence data, hospital admissions, and projected vaccination coverage for Portugal. Our analyses suggest that the pressing need to restart socioeconomic activities could lead to new pandemic waves, and that substantial control efforts prove necessary throughout 2021. Using knowledge on control measures introduced in 2020, we anticipate that relaxing measures completely or to the extent as in autumn 2020 could launch a wave starting in April 2021. Additional waves could be prevented altogether if measures are relaxed as in summer 2020 or in a step-wise manner throughout 2021. We discuss at which point the control of COVID-19 would be achieved for each scenario.G.R., J.V., A.N., M.C.G. were supported by Fundação para a Ciência e a Tecnologia (FCT) project reference 131_596787873, awarded to G.R. M.V. was supported by the European Union H2020 ERA project (No. 667824 - EXCELLtoINNOV). The contribution of C.H.v.D. was under the auspices of the US Department of Energy (contract number 89233218CNA000001) and supported by the National Institutes of Health (grant number R01-OD011095). MK acknowledges support from the Netherlands Organization for Health Research and Development (ZonMw) Grant no. 10430022010001.info:eu-repo/semantics/publishedVersio

    Infectious reactivation of cytomegalovirus explaining age- and sex-specific patterns of seroprevalence.

    Get PDF
    Human cytomegalovirus (CMV) is a herpes virus with poorly understood transmission dynamics. Person-to-person transmission is thought to occur primarily through transfer of saliva or urine, but no quantitative estimates are available for the contribution of different infection routes. Using data from a large population-based serological study (n = 5,179), we provide quantitative estimates of key epidemiological parameters, including the transmissibility of primary infection, reactivation, and re-infection. Mixture models are fitted to age- and sex-specific antibody response data from the Netherlands, showing that the data can be described by a model with three distributions of antibody measurements, i.e. uninfected, infected, and infected with increased antibody concentration. Estimates of seroprevalence increase gradually with age, such that at 80 years 73% (95%CrI: 64%-78%) of females and 62% (95%CrI: 55%-68%) of males are infected, while 57% (95%CrI: 47%-67%) of females and 37% (95%CrI: 28%-46%) of males have increased antibody concentration. Merging the statistical analyses with transmission models, we find that models with infectious reactivation (i.e. reactivation that can lead to the virus being transmitted to a novel host) fit the data significantly better than models without infectious reactivation. Estimated reactivation rates increase from low values in children to 2%-4% per year in women older than 50 years. The results advance a hypothesis in which transmission from adults after infectious reactivation is a key driver of transmission. We discuss the implications for control strategies aimed at reducing CMV infection in vulnerable groups

    Model-based evaluation of school- and non-school-related measures to control the COVID-19 pandemic

    Get PDF
    Background: In autumn 2020, many countries, including the Netherlands, are experiencing a second wave of the COVID-19 pandemic. Health policymakers are struggling with choosing the right mix of measures to keep the COVID-19 case numbers under control, but still allow a minimum of social and economic activity. The priority to keep schools open is high, but the role of school-based contacts in the epidemiology of SARS-CoV-2 is incompletely understood. We used a transmission model to estimate the impact of school contacts on the transmission of SARS-CoV-2 and to assess the effects of school-based measures, including school closure, on controlling the pandemic at different time points during the pandemic. Methods and Findings: The age-structured model was fitted to age-specific seroprevalence and hospital admission data from the Netherlands during spring 2020. Compared to adults older than 60 years, the estimated susceptibility was 23% (95%CrI 20-28%) for children aged 0 to 20 years and 61% (95%CrI 50%-72%) for the age group of 20 to 60 years. The time points considered in the analyses were (i) August 2020 when the effective reproduction number (R_e) was estimated to be 1.31 (95%CrI 1.15-2.07), schools just opened after the summer holidays and measures were reinforced with the aim to reduce R_e to a value below 1, and (ii) November 2020 when measures had reduced R_e to 1.00 (95%CrI 0.94-1.33). In this period schools remained open. Our model predicts that keeping schools closed after the summer holidays, in the absence of other measures, would have reduced R_e by 10% (from 1.31 to 1.18 (95%CrI 1.04-1.83)) and thus would not have prevented the second wave in autumn 2020. Reducing non-school-based contacts in August 2020 to the level observed during the first wave of the pandemic would have reduced R_e to 0.83 (95%CrI 0.75-1.10). Yet, this reduction was not achieved and the observed R_e in November was 1.00. Our model predicts that closing schools in November 2020 could reduce R_e from the observed value of 1.00 to 0.84 (95%CrI 0.81-0.90), with unchanged non-school based contacts. Reductions in R_e due to closing schools in November 2020 were 8% for 10 to 20 years old children, 5% for 5 to 10 years old children and negligible for 0 to 5 years old children. Conclusions: The impact of measures reducing school-based contacts, including school closure, depends on the remaining opportunities to reduce non-school-based contacts. If opportunities to reduce R_e with non-school-based measures are exhausted or undesired and R_e is still close to 1, the additional benefit of school-based measures may be considerable, particularly among the older school children.</jats:p

    Estimation of introduction and transmission rates of SARS-CoV-2 in a prospective household study

    Get PDF
    Household studies provide an efficient means to study transmission of infectious diseases, enabling estimation of susceptibility and infectivity by person-type. A main inclusion criterion in such studies is usually the presence of an infected person. This precludes estimation of the hazards of pathogen introduction into the household. Here we estimate age- and time-dependent household introduction hazards together with within household transmission rates using data from a prospective household-based study in the Netherlands. A total of 307 households containing 1, 209 persons were included from August 2020 until March 2021. Follow-up of households took place between August 2020 and August 2021 with maximal follow-up per household mostly limited to 161 days. Almost 1 out of 5 households (59/307) had evidence of an introduction of SARS-CoV-2. We estimate introduction hazards and within-household transmission rates in our study population with penalized splines and stochastic epidemic models, respectively. The estimated hazard of introduction of SARS-CoV-2 in the households was lower for children (0-12 years) than for adults (relative hazard: 0.62; 95%CrI: 0.34-1.0). Estimated introduction hazards peaked in mid October 2020, mid December 2020, and mid April 2021, preceding peaks in hospital admissions by 1-2 weeks. Best fitting transmission models included increased infectivity of children relative to adults and adolescents, such that the estimated child-to-child transmission probability (0.62; 95%CrI: 0.40-0.81) was considerably higher than the adult-to-adult transmission probability (0.12; 95%CrI: 0.057-0.19). Scenario analyses indicate that vaccination of adults can strongly reduce household infection attack rates and that adding adolescent vaccination offers limited added benefit

    Estimation of introduction and transmission rates of SARS-CoV-2 in a prospective household study

    Get PDF
    Household studies provide an efficient means to study transmission of infectious diseases, enabling estimation of individual susceptibility and infectivity. A main inclusion criterion in such studies is often the presence of an infected person. This precludes estimation of the hazards of pathogen introduction into the household. Here we use data from a prospective household-based study to estimate SARS-CoV-2 age- and time-dependent household introduction hazards together with within household transmission rates in the Netherlands from August 2020 to August 2021. Introduction hazards and within-household transmission rates are estimated with penalized splines and stochastic epidemic models, respectively. The estimated hazard of introduction of SARS-CoV-2 in the households was lower for children (0-12 years) than for adults (relative hazard: 0.62; 95%CrI: 0.34-1.0). Estimated introduction hazards peaked in mid October 2020, mid December 2020, and mid April 2021, preceding peaks in hospital admissions by 1-2 weeks. The best fitting transmission models include increased infectivity of children relative to adults and adolescents, such that the estimated child-to-child transmission probability (0.62; 95%CrI: 0.40-0.81) was considerably higher than the adult-to-adult transmission probability (0.12; 95%CrI: 0.057-0.19). Scenario analyses show that vaccination of adults could have strongly reduced infection attack rates in households and that adding adolescent vaccination would have offered limited added benefit

    Modeling the immunological pre-adaptation of HIV-1

    No full text
    It is becoming increasingly evident that the evolution of HIV-1 is to a large extent determined by the immunological background of the host. On the population-level this results in associations between specific human leukocyte antigen (HLA) alleles and polymorphic loci of the virus. Furthermore, some HLA alleles that were previously associated with slow progression to AIDS have been shown to lose their protective effect, because HLA-specific immunological escape variants have spread through the population. This phenomenon is known as immunological pre-adaptation. Apart from adapting to human immune responses, the set-point virus load (SPVL) of HIV-1 is thought to have evolved to values that optimize the population-level fitness of the virus. This suggestion is supported by considerable heritability of the SPVL. Previous modeling studies show that whether or not SPVL optimization is expected to occur depends sensitively on the underlying assumptions with respect to the extent of within- versus between-host selection. Here we use a detailed and semi-realistic multi-level HIV-1 model in which immunological pre-adaptation and SPVL evolution can emerge from the underlying interactions of the virus with the immune system of the host. This enables us to study the effect of immunological escape on disease progression, and how disease progression may be molded by SPVL evolution. We find that the time to AIDS could decrease significantly (0.5-1.0 years) in a HLA-dependent manner by immunological pre-adaptation over the long-term course of the epidemic (>100 years). We find that SPVL is not expected to evolve to optimize the population-level fitness of HIV-1, even though high heritability of the SPVL emerges from continual selection of immune-escape mutations

    Immuno-epidemiological Modeling of HIV-1 Predicts High Heritability of the Set-Point Virus Load, while Selection for CTL Escape Dominates Virulence Evolution

    No full text
    <div><p>It has been suggested that HIV-1 has evolved its set-point virus load to be optimized for transmission. Previous epidemiological models and studies into the heritability of set-point virus load confirm that this mode of adaptation within the human population is feasible. However, during the many cycles of replication between infection of a host and transmission to the next host, HIV-1 is under selection for escape from immune responses, and not transmission. Here we investigate with computational and mathematical models how these two levels of selection, within-host and between-host, are intertwined. We find that when the rate of immune escape is comparable to what has been observed in patients, immune selection within hosts is dominant over selection for transmission. Surprisingly, we do find high values for set-point virus load heritability, and argue that high heritability estimates can be caused by the ‘footprints’ left by differing hosts' immune systems on the virus.</p></div

    Host-heterogeneity and heritability.

    No full text
    <p>(A) The panel shows a contour plot of heritability (, gray lines, red/yellow faces) as a function of the maximal virus load () and the expected similarity between binding repertoires (). On top of the heritability contour plot, the blue lines indicate the contours of . The heavy blue contour corresponds to the transmission-optimal . (B) Distributions of the overlap between pairs of binding repertoires. The black bars correspond to European HLA-haplotypes and a clade B virus (sampled in the Netherlands). The gray bars correspond to Sub-Saharan HLA-haplotypes and a clade C virus (sampled in South Africa). The distributions were simulated by sampling a HLA-haplotype pairs. (C) Statistics on the sampled distributions as in panel B. The left panel shows the medians of the similarity distributions for strains representative of clade B (black dots) and clade C (gray dots). The difference is significant (Mann-Withney -test, , *). The right panel depicts the -statistic for all clade B and clade C pairs. The mean of the -statistics is significantly larger than (-test , ***).</p

    The bifurcation in the homogeneous model.

    No full text
    <p>For each a thin gray line indicates the curve . The heavy black line separates the region of the parameter space (between-host adaptation) where for all .</p

    Two simulations of HIV-1 epidemics with two different mutation rates.

    No full text
    <p>The parameters are as follows: The maximal virus load equals , and the population size equals . (A) The escape mutation rate in the acute phase equals . (B) The escape mutation rate in the acute phase equals . The other parameters are listed in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1003899#pcbi-1003899-t001" target="_blank">Table 1</a>. The simulations were started with infected individuals that were infected with a virus with mutations. The heavy lines in the graph of the set-point (spVL) and the number of mutations (# mutations) denote the population-wide average, i.e., and , respectively. The light bands denote the percentiles, and the dots indicate the spVL of the receiver of a transmission couple (spVL) and the number of mutations of the transmitted strain (# mutations). In the graphs of the spVL, the dashed black line indicates the mean set-point that maximizes the transmission potential of HIV-1.</p
    corecore