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Abstract

Human cytomegalovirus (CMV) is a herpes virus with poorly understood transmission

dynamics. Person-to-person transmission is thought to occur primarily through transfer of

saliva or urine, but no quantitative estimates are available for the contribution of different

infection routes. Using data from a large population-based serological study (n = 5,179), we

provide quantitative estimates of key epidemiological parameters, including the transmissi-

bility of primary infection, reactivation, and re-infection. Mixture models are fitted to age- and

sex-specific antibody response data from the Netherlands, showing that the data can be

described by a model with three distributions of antibody measurements, i.e. uninfected,

infected, and infected with increased antibody concentration. Estimates of seroprevalence

increase gradually with age, such that at 80 years 73% (95%CrI: 64%-78%) of females and

62% (95%CrI: 55%-68%) of males are infected, while 57% (95%CrI: 47%-67%) of females

and 37% (95%CrI: 28%-46%) of males have increased antibody concentration. Merging the

statistical analyses with transmission models, we find that models with infectious reactiva-

tion (i.e. reactivation that can lead to the virus being transmitted to a novel host) fit the data

significantly better than models without infectious reactivation. Estimated reactivation rates

increase from low values in children to 2%-4% per year in women older than 50 years. The

results advance a hypothesis in which transmission from adults after infectious reactivation

is a key driver of transmission. We discuss the implications for control strategies aimed at

reducing CMV infection in vulnerable groups.

Author summary

Human cytomegalovirus (CMV) is a herpes virus causing lifelong infection. In high-

income countries, the probability of infection increases gradually with age such that at old

age up to 100% of the population is infected. CMV is thought to be transmitted mainly by
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transfer of saliva or urine, but little quantitative evidence is available about the transmis-

sion dynamics. We analyze serological data to estimate age- and sex-specific rates of infec-

tion, re-infection, and reactivation. The analyses show that infectious reactivation (i.e.

reactivation of the virus in an infected person that is sufficient for it to be transmitted to

another person) is essential to explain the data. We propose that infectious reactivation in

adults is an important driver of transmission of CMV.

Introduction

Human cytomegalovirus (CMV) is a highly prevalent herpesvirus that infects between 30%

and 100% of persons in populations throughout the world [1]. Usually thought to be a rela-

tively benign persistent infection, CMV is able to cause serious disease in the immunocompro-

mised and offspring of pregnant women with an active infection [2–5]. CMV also has been

implicated in a variety of diseases in healthy persons [4, 6–8], and plays a role in aging of the

immune system [9–12], perhaps thereby reducing the effectiveness of vaccination in older per-

sons [13–15].

Although the importance of CMV to public health is acknowledged, and even though the

development and registration of a vaccine has been declared a priority [16, 17], little quantita-

tive information is available on the transmission dynamics of CMV. At present, the only popu-

lation-level data derive from serological studies, aiming to uncover which part of the

population is infected at what age. These studies show that i) a sizable fraction of infants is

infected perinatally (before 6 months of age), ii) seroprevalence increases gradually with age

and is usually higher in females than in males, and iii) the probability of seropositivity is associ-

ated with both ethnicity and socioeconomic status, with non-western ethnicity and lower

socioeconomic status being associated with higher rates of seropositivity [1, 18–21].

CMV infection has a profound impact on the human immune system. Most prominently, it

is able to mould the T cell immune repertoire, in particular by expansion of the CMV-specific

CD8+ memory T cell pool, a phenomenon called memory inflation [12]. Similar result have

been found for memory B cell immunity [22]. With regard to humoral immune responses,

high levels of CMV-specific IgG antibodies are increasingly considered a biomarker for lack of

control by the immune system of the host, and have been associated with high probability of

reactivation ([23, 24], see [12] and references therein). In view of this, it is not surprising that

evidence is accumulating of an association between high levels of CMV-specific IgG antibod-

ies, inflammation, vascular disease, and mortality [6, 7].

Person-to-person transmission of CMV from an infected to an uninfected person can

occur from a primary infected person, or from a person who is experiencing a reactivation epi-

sode or from a person who has been reinfected [4]. Here, we analyze data from a large-scale

serological study to obtain quantitative estimates of the relative importance of these transmis-

sion routes [21]. We fit mixture models linked to age- and sex-specific transmission models to

the data to study the ability of different hypotheses explaining the serological data. Specifically,

we quantify the incidence and transmissibility of primary infection, re-infection, and reactiva-

tion. Throughout, our premise is that measurements of antibody concentrations provide infor-

mation on whether or not a person has been infected, and whether or not re-infection or

reactivation have occurred. Persons with low measurements are considered uninfected (sus-

ceptible), while persons with intermediate and high antibody concentrations are infected with

and without subsequent re-infection or reactivation, respectively.

Infectious reactivation of cytomegalovirus
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The analyses show that infectious reactivation in adults is necessary to explain the data, and

is expected to be an important driver of transmission. The results have implications for control

of CMV by vaccination, but also in the broader context of T cell immune memory inflation,

vascular disease, and immunosenescence [12, 25, 26].

Methods

Ethics statement

The study was approved by the Medical Ethics Testing Committee of the foundation of thera-

peutic evaluation of medicines (METC-STEG) in Almere, the Netherlands (clinical trial num-

ber: ISRCTN 20164309). All participants or their legal representatives had given written

informed consent.

Study design

The analyses make use of sera from a cross-sectional population-based study carried out in the

Netherlands in 2006-2007. Details have been published elsewhere [21, 27]. Briefly, 40 munici-

palities distributed over five geographic regions of the Netherlands were randomly selected

with probabilities proportional to their population size, and an age-stratified sample was

drawn from the population register. A total of 19,781 persons were invited to complete a ques-

tionnaire and donate a blood sample. Serum samples and questionnaires were obtained from

6,382 participants. To exclude the interference of maternal antibodies, we restrict analyses to

sera from persons older than 6 months (6,215 samples). We further select Dutch persons and

migrants of Western ethnicity to preclude confounding by ethnicity (5,179 samples) and strat-

ify the data by sex [21], yielding 2,842 and 2,337 samples from female and male participants,

respectively. The data are available at github.com/mvboven/cmv-serology.

Antibody assay

We use the ETI-CYTOK-G PLUS (DiaSorin, Saluggia, Italy) Elisa to detect CMV-specific IgG

antibodies. The assay yields continuous measurements (henceforth called ‘antibody concentra-

tion’). A small number of samples is right-censored (140 persons). We perform a Box-Cox

transformation of the data (λ = 0.3), yielding a distribution of low antibody concentrations

(-2.8< x�-0.5) that is approximately normal. According to the provider of the assay, samples

with (transformed) measurement lower than -0.8 U/ml should be considered uninfected,

while samples with measurement greater or equal than -0.8 U/ml should be classified as

infected. Right-censoring is applied to the 140 samples above the upper limit of 3.41 U/ml. The

data with model fit (see below) are shown in Fig 1.

Mixture model

The data are analyzed statistically using a mixture model with sex- and age-specific mixing

functions. We distinguish three distributions, describing samples of low (susceptible, S), inter-

mediate (latently infected, L), and high (latently infected with increased antibodies, B) anti-

body concentrations. The L and B distributions are modeled using normal distributions with

means and standard deviations independent of age and sex. The S distribution is modeled by a

mixture of a spike and a normal distribution (an inflated normal distribution), as there appears

a spike at -2.91 U/ml in the data (263 persons). In this way, samples with concentration at the

spike belong to the susceptible component with probability 1.

We model the probability of each of the three outcomes in terms of log-odds, taking the

probability of being in the S component as reference. This allows us to write the log-odds of

Infectious reactivation of cytomegalovirus
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being in component L or B as linear functions of age and sex. The design matrix of the result-

ing multinomial logistic model consists of natural cubic splines with interior knots at 20, 40

and 60 years and boundary knots at 0 and 80 years. Hence, the mixing functions (prevalences)

have flexible shape, which allows these to be optimally informed by the data. In the results, sex

is put in the model as main effect, as analyses show no improvement in fit when including age

by sex interaction.

We estimate parameters in a Bayesian framework using R and JAGS [28, 29]. Non-informa-

tive normal prior distributions are set on the means of the three component distributions

(N ð0; 0:001Þ) (mean and precision). Label switching is prevented by prior ordering of the

means. The precisions of the components are given flat Gamma prior distributions (Γ(0.5,

0.005)). The spline parameters are also given non-informative normal prior distributions

(N ð0; 0:001Þ). We apply a QR-decomposition to the design matrix to improve mixing and

run 10 MCMC chains in parallel, yielding a total of 10,000 samples. We apply an 1/10 thinning

to give a well-mixed 1,000 samples from the posterior distribution.

Fig 1. Data and model fit. Data (histograms) and model fit (lines) of IgG antibody measurements by age

group and sex. Left- and right-hand panels show results for females (purple) and males (brown), respectively.

The leftmost bars at -2.9 contain samples that are assumed uninfected, and the rightmost bars at 4.5 contain

samples that are right-censored (with concentration >3.41 U/ml; Methods). Insets show the age group and

number of samples.

https://doi.org/10.1371/journal.pcbi.1005719.g001
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Transmission model and scenarios

Next to the mixture model analyses, we estimate parameters of transmission models to investi-

gate the ability of different transmission hypotheses explaining the data. To facilitate compari-

son between transmission models, take the medians of the estimated mixture distributions as

input. In line with the above, we focus on a sex- and age-structured model in which persons

are probabilistically classified as uninfected (S), latently infected (L), and latently infected after

reactivation or re-infection (B). As the infectious period is short relative to the lifespan of the

host (weeks versus decades), the infectious periods are modeled implicitly using the short-dis-

ease approximation [30]. Further, we focus on the endemic equilibrium of the transmission

model so that all variables are time-independent [30, 31]. Fig 2 shows a schematic of the

model. For sexes i 2 {♀,♂}, the differential equations for the age-specific relative frequencies

S(a), L(a), and B(a) (S(a) + L(a) + B(a) = 1) are given by

dSiðaÞ
da

¼ � l
i
ðaÞSiðaÞ

dLiðaÞ
da

¼ l
i
ðaÞSiðaÞ � ðriðaÞ þ z l

i
ðaÞÞLiðaÞ

dBiðaÞ
da

¼ ðriðaÞ þ z l
i
ðaÞÞLiðaÞ ;

ð1Þ

with forces of infection

l
i
ðaÞ ¼

X

j2f♀;♂g

Z M

0

cijða; a0Þðb1l
j
ða0ÞSjða0Þ þ b2ðr

jða0Þ þ zl
j
ða0ÞÞLjða0ÞÞda0 : ð2Þ

In Eqs (1) and (2), zλj(a) and ρj(a) are the age-specific re-infection and reactivation rates, z
is the susceptibility to re-infection of latently infected persons relative to the susceptibility of

uninfected persons (0� z� 1), cij(a, a0) represents the contact rate between persons of age a0

and sex j, and those of age a and sex i [32, 33], β1 and β2 are proportionality parameters deter-

mining the transmissibility of primary infection and reactivation/re-infection, and M is the

maximum age. As the data do not extend beyond 80 years we take M = 80 years. Notice that

λj(a)Sj(a) and (ρj(a) + z λj(a))Lj(a) are the incidence of primary infection and the incidence of

reactivation and re-infection, so that β1λ
j(a)Sj(a) and β2(ρj(a) + z λj(a))Lj(a) are the infectious

output generated by primary infection and reactivation/re-infection, respectively [30].

As in earlier studies, contact rates are hard-wired into the model using data on social con-

tact patterns, thereby adopting the social contact hypothesis [32–34]. Here we use the mixing

matrix based on reported physical contacts [32]. The discretized contact function and demo-

graphic data are available at github.com/mvboven/cmv-serology.

Fig 2. Schematic of the transmission model. Si(a) denotes the proportion of uninfected persons of age a

and sex i (i 2 {♀,♂}), and Li(a) and Bi(a) are the corresponding proportions of infected persons without and

with increased antibodies, respectively. The infection and re-infection rates are given by λi(a) and zλi(a), and

the reactivation rates are given by ρi(a). We consider model scenarios with and without reactivation/re-

infection in the B compartment (i.e. including or excluding the loop to the right of B).

https://doi.org/10.1371/journal.pcbi.1005719.g002

Infectious reactivation of cytomegalovirus

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005719 September 26, 2017 5 / 18

https://doi.org/10.1371/journal.pcbi.1005719.g002
https://doi.org/10.1371/journal.pcbi.1005719


Below, we consider a suite of simplifications and variations of the full model specified by

Eqs (1) and (2). In the simplifications, we assume that (i) there is no re-infection (z = 0), (ii)

there is no reactivation (ρi(0) = 0), or (iii) reactivation and re-infection are not infectious (β2 =

0). We also consider a variation of the model in which re-infection and reactivation do not

only occur upon transition from L to B, but also in the B compartment. In these models the

infectious output generated by reactivation and re-infection in Eq (2) (β2(ρj(a0) + zλj(a0))Lj(a0))
is replaced by β2(ρj(a0) + zλj(a0))(Lj(a0) + Bj(a0)).

Solution and discretization

The differential equations can be solved in terms of the forces of infection using the variation

of constants method. Here we assume, based on results of the mixture model, that a non-negli-

gible fraction of infants is infected in the first six months of life and the fraction infected is

equal in female and male infants [21]. Hence, we have S♀(0) = S♂(0) = S0, L♂(0) = L♀(0) = 1 −
S0, and B♀(0) = B♂(0) = 0 as initial conditions, and the solution of (1) is given by

SiðaÞ ¼ Si
0
e�
R a

0
lðtÞdt

LiðaÞ ¼ ð1 � Si
0
Þe�
R a

0
rðtÞþzlðtÞdt

þ Si
0

R a
0

lðtÞe�
R t

0
lðt0Þdt0 �

R a

t
rðt0Þþzlðt0Þdt0dt :

ð3Þ

Insertion of Eq (3) in Eq (2) yields two integral equations for the age-specific forces of infection

in females and males [34–37]. These equations cannot be solved explicitly in general. It is pos-

sible, however, to solve the equations for specific functions.

Here, we assume that reactivation and contact rates are constant on certain predefined age-

intervals. From Eq (2), it then follows that the force of infection is piecewise constant as well.

Throughout, we consider age intervals of fixed size Δa = 5 years, so that the limits of the n =

M/Δa = 16 age classes are defined by the vector a = (0, Δ a, 2Δ a, . . ., nΔ a). Hence, the j-th

class (j = 1, . . ., n) contains all persons with age in the interval [a[j], a[j + 1]), where a[j] denotes

the j-th element of a. Subsequently, the forces of infection λi(a) and reactivation rates ρi(a) are

replaced by their counterparts l
i
j and ri

j. Similarly, Si(a), Li(a), and Bi(a) at the borders of the

age-intervals are given by Si
j, Li

j, and Bi
j. Insertion in Eq (3) and integrating over the (constant)

rates yields

Si
j ¼ S0 e� Da

Pj

k¼1
li

k

Li
j ¼ ð1 � S0Þ e� Da

Pj

k¼1
ri

kþzli
k þ

S0

Xj

k¼1

l
i
k

e� Daðri
kþzli

kÞ � e� Dali
k

ð1 � zÞli
k � ri

k

e� Dað
Pk� 1

‘¼1
li
‘
�
Pj

‘¼kþ1
ri
‘
þzli

‘
Þ
;

ð4Þ

where i 2 {♀,♂} and Bi
j ¼ 1 � Si

j � Li
j. Insertion of Eq (4) in Eq (2) and making use of the fact

that the cumulative incidences of infection and reactivation/re-infection in age class j are given

by
R a½jþ1�

a½j�
l

i
ðaÞSiðaÞda ¼ Siða½j�Þ � Siða½jþ1�Þ and Bi(a[j + 1]) − Bi(a[j]), yields 32 equations (16 per

sex) for the 32 forces of infection.

Estimation and model selection

As in the mixture model with spline mixing parameters, the log-likelihood of each observation

is given by a mixture distribution, where the spline functions are replaced by Si(a), Li(a), and

Bi(a). For instance, the likelihood contribution of a sample with antibody measurement c in a

Infectious reactivation of cytomegalovirus
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person of sex i and age a is given by

SiðaÞfSðcÞ þ LiðaÞfLðcÞ þ BiðaÞfBðcÞ ;

where Si(a), Li(a), and Bi(a) are the age specific prevalences in sex i, and fS(c), fL(c), and fB(c)

are the densities of the mixture distributions at antibody concentration c.

In both sexes, reactivation rates are modeled by piecewise constant functions with steps at

20 and 50 years, i.e. with rates that are constant on the intervals [0, 20), [20, 50), and [50, 80)

years. Hence, the reactivation rates are characterized by three parameters in each sex, viz.

ri
½0;20Þ

, ri
½20;50Þ

, and ri
½50;80Þ

(i 2 {♀,♂}).

Bayesian parameter estimates are obtained using Markov chain Monte Carlo (MCMC). Ini-

tially, results were obtained using tailored Mathematica code, using a single-component

random walk metropolis algorithm while solving the consistency equations for the forces of

infection using a Quasi-Newton (secant) method. As this became exceedingly slow for specific

models, we recoded the models using Hamiltonian Monte Carlo with Stan (mc-stan.org).

Here, the discretized equations for the forces of infection (2) are solved by specifying that the

differences between the left- and right-hand sides are small, and approximately N ð0; 10� 4Þ

(mean and scale) distributed. Cross-checking of the two methods yielded very similar results.

All programs are available at github.com/mvboven/cmv-serology.

Prior distributions of the parameters are as follows: b1 � N ð0:1; 10Þ (mean and scale),

b2 � N ð0:1; 10Þ, z � Uð0; 1Þ, mr � N ð0; 10Þ, 1=sr � N ð0; 10Þ, and ri
x � N ðmr; srÞ for all i

and x. Whenever applicable, distributions are truncated to be positive. With these prior

parameter distributions, the joint posterior distribution is strongly dominated by the data. Ten

chains of 3,000 iterations are run in parallel, of which the first 500 iterations (warmup) are dis-

carded. We apply 1/5 thinning, yielding a total of 5,000 samples per model scenario. For all

parameters, effective sample sizes usually lie between 3,000 and 4,500. Convergence of chains

is assessed visually, and by assessment of the empirical variance within and between chains

[38]. To prevent the occurrence of divergent transitions we set ADAPT_DELTA = 0.99.

Parameter estimates and bounds of credible intervals are represented by 2.5, 50, and 97.5 per-

centiles of the posterior samples. Results are usually obtained in 1-3 hours on a personal

computer.

Model selection is based on WAIC, a measure for predictive performance, and WBIC, a

measure for identifying the most likely model generating the data [39–41]. WAIC is obtained

directly from the posterior likelihood using the R-package LOO (cran.r-project.org). WBIC is

calculated in a separate run as the average log likelihood over the posterior samples, using a

sampling ‘temperature’ determined by the number of observations [39].

Results

Classification

Fig 1 presents the data stratified by sex and age, with fit of the statistical model. The data and

model fit show peaks at low antibody measurements (-2.9 U/ml and�-2 U/ml), corresponding

to uninfected persons (denoted by S). In both sexes, there is a third peak at higher measure-

ments (1-3 U/ml) that shifts to higher values with increasing age. This peak is composed of

persons who are infected (denoted by L) and persons who are infected with high antibody con-

centrations (denoted by B). Overall, the model appears to describe the data well.

This is confirmed in Fig 3, which shows the estimated components of the mixture distribu-

tion and diagnostic characteristics of the classification. The component distribution of unin-

fected persons hardly overlaps with the two component distributions for infected persons,

Infectious reactivation of cytomegalovirus
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while there is some overlap between the distributions of infected persons. This can be made

more precise using detection theory. Specifically, in Fig 3 we graph the specificity Sp (the prob-

ability of correctly classifying a negative subject) and sensitivity Se (the probability of correctly

classifying a positive subject) in a receiver operating characteristic (ROC) graph with antibody

concentration specifying a cut-off for binary classification as parameter [42–44]. Subsequently,

we use the maximal Youden index (i.e. max(Se + Sp − 1)) to choose an optimal cut-off, and

find that classification of persons as uninfected versus infected is near perfect (Youden index:

0.97, at cut-off -0.70 U/ml), while classification of persons with high antibody concentrations

is good (Youden index: 0.71, at cut-off 1.81 U/ml). These results show that the classification is

supported by the data (i.e. has high probability yielding an informed decision).

We further investigate whether mixture models with fewer or more components are able to

provide an even better description of the data, and found that a model with two mixture com-

ponents does not perform well (ΔWAIC = 300.2 in favor of the three-component mixture dis-

tribution), while performance of models with four components depends sensitively on choice

of prior distribution of the fourth distribution, and often yields broad posterior antibody distri-

butions with small estimated prevalence that overlap with the other three component distribu-

tions. Hence, a mixture model with three components gives an optimal description of the data.

Prevalence estimation

Fig 4 shows the estimated prevalences in females and males as a function of age [42–44]. The

prevalence of uninfected persons decreases gradually with age, from approximately 0.80 in

infants (females: 0.81, 95%CrI: 0.77-0.85; males: 0.80, 95%CrI: 0.76-0.84) to 0.27 (95%CrI:

0.22-0.34) and 0.38 (95%CrI: 0.32-0.45) at 80 years in females and males, respectively. In both

females and males the latently infected prevalence remains approximately constant, ranging

from 0.15 to 0.20 in females and from 0.18 to 0.28 in males. In contrast, the prevalence of per-

sons with increased antibodies increases strongly with age, especially in females. In fact, the

Fig 3. Classification of samples. Shown are the estimated components of the mixture distribution using the

parameter posterior medians (left-hand panel; blue: susceptible; purple: infected; red: infected with increased

antibody concentration), and receiver operating characteristic of binary classifications taking these estimates as

ground truth (right-hand panel). The maximal Youden index for classification of uninfected versus infected

persons is 0.97 at antibody concentration -0.70 U/ml, with sensitivity 0.99 and specificity 0.98. This value

corresponds well with the threshold for infection of -0.8 U/ml provided by the supplier of the assay. The maximal

Youden index for classification of persons with increased antibody concentration is 0.71 at antibody

concentration 1.81 U/ml, with sensitivity 0.84 and specificity 0.87.

https://doi.org/10.1371/journal.pcbi.1005719.g003
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prevalence of persons with increased antibodies increases from 0.09 (95%CrI: 0.06-0.13) at 20

years to 0.57 (95%CrI: 0.47-0.67) at 80 years in females, and from 0.04 (95%CrI: 0.03-0.07) to

0.37 (95%CrI: 0.28-0.46) in males. Hence, in older persons the prevalence of persons with

increased antibodies is 54% (or 20 per cent points) higher in females than in males.

Of particular interest is the prevalence of infection in females of childbearing age, as this

group is at risk of transmission to the fetus or newborn. Using the above analyses, we find that

Fig 4. Estimation of age- and sex-specific prevalence. Prevalence estimates are presented for females

(top panel) and males (bottom panel), and for classes of low (susceptible, blue), intermediate (latently

infected, purple), and high (latently infected with increased antibodies, red) antibody measurements. Shown

are 1,000 samples from the posterior distribution (thin lines) with posterior medians (bold lines). Dots indicate

the fraction of samples that would be classified as uninfected with the cut-off specified by the supplier of the

assay. The number of samples per 1-year age group is approximately 35 (females) and 30 (males).

https://doi.org/10.1371/journal.pcbi.1005719.g004
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the prevalence of infection (i.e. the combined prevalence in the L and B compartments) is 0.30

(95%CrI: 0.27-0.33) in 20-year-old females and 0.42 (95%CrI: 0.39-0.46) in 40-year-old

females. If we combine these figures with the observation that approximately 20% of children

are infected at six months of age, and that less than 5% of children in the Netherlands in 2007

had a mother under 20 years or over 40 years, we deduce that the probability of perinatal trans-

mission could be between 0.20/0.42 = 0.48 and 0.20/0.30 = 0.67, with the exact figure depend-

ing on the distribution of ages at which mothers give birth. In addition, one could envisage

that the highest risk of (severe) infection of the fetus or newborn is when mothers are infected

or experience a reactivation episode. The estimated rates at which susceptible females of 20

and 40 years are infected are 0.0055 per year (95%CrI: 0.0036-0.0077) and 0.0092 per year

(95%CrI: 0.0069-0.011) per year, respectively. The rates at which latently infected females of 20

and 40 years are re-infected or experience a reactivation episode are of similar magnitude, and

are estimated at 0.0059 per year (95%CrI: 0.0038-0.0086) and 0.0093 per year (95%CrI: 0.0064-

0.012), respectively. The overall rates of infection, reactivation, and re-infection in 20 and 40

year-old females are given by the sum of the above estimates, and are approximately 1% and

2% per year, respectively.

Estimation of reactivation and re-infection rates

To evaluate the ability of different transmission hypotheses explaining the data, and to obtain

parameter estimates that have a biological interpretation, we analyzed the data with transmis-

sion models. A comparison of model scenarios based on the information criteria WAIC and

WBIC is given in Table 1. Overall, the analyses show that models with the possibility of multi-

ple infectious reactivations perform best (Models E and F; lowest WAIC and WBIC), that

models with at most one infectious reactivation perform worse (Models A and B; ΔWAIC and

ΔWBIC�10 − 15), and that models without reactivation or with reactivation not being infec-

tious have very low support (Models C, D, and G). These results indicate that infectious reacti-

vation is key to adequately explain the data with transmission models. This is true in our

model with contact structure based on reported physical contacts [32], and also in an alterna-

tive model formulation that assumes a uniform contact structure (ΔWAIC = 151.9 in favor of

the model with reactivation over the model without reactivation and no re-infection).

Within the set of models with infectious reactivation there are only small differences

between models that do and do not incorporate re-infection (Model A versus Model B, and

Model E versus Model F). This indicates that while infectious reactivation is essential to

Table 1. Model selection of transmission scenarios.

Model Description WAIC ΔWAIC WBIC ΔWBIC

A Reactivation and re-infection 22156.2 13.0 22211.3 13.7

B No re-infection 22155.5 12.3 22209.4 11.8

C No reactivation 22363.6 220.4 22396.9 199.3

D Reactivation/re-infection not infectious 22215.3 72.1 22247.9 36.6

E Multiple reactivations/re-infections 22144.0 0.7 22197.6 0

F Multiple reactivations and no re-infection 22143.2 0 22198.4 0.8

G Multiple re-infections and no reactivation 22364.4 221.2 22396.8 199.2

For each of seven model scenarios we report the WAIC, a measure of predictive performance, and WBIC, a measure for the most likely model generating

the data. Also shown are the WAIC and WBIC differences with the best fitting model. Models E-G contain the possibility of multiple reactivation/re-infection

events in persons with increased antibody concentrations (the B compartment; cf. Fig 2).

https://doi.org/10.1371/journal.pcbi.1005719.t001

Infectious reactivation of cytomegalovirus

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005719 September 26, 2017 10 / 18

https://doi.org/10.1371/journal.pcbi.1005719.t001
https://doi.org/10.1371/journal.pcbi.1005719


adequately describe the data, the analyses are inconclusive with respect to whether or not

infectious re-infection should be included.

Fig 5 and Table 2 show parameter estimates of the model with highest statistical support (as

judged by WBIC). The preferred model (Model E) includes multiple reactivations and re-

infections, infectious reactivation, and infectious re-infection. In this model, the estimated

transmissibility of primary infection (β1) is much lower than the transmissibility of reactiva-

tion/re-infection (β2). In fact, the posterior median of β2 is more than an order of magnitude

larger than the posterior median of β1. Further, the relative susceptibility to re-infection (i.e.

the probability of re-infection in a contact that would lead to infection if the contacted person

were uninfected) has a broad posterior distribution, and cannot be estimated with meaningful

precision from the data (ẑ ¼ 0:32; 95%CrI: 0.017-0.84). Similar findings are obtained in other

model scenarios, in particular Models A-B and E-F (Table 1).

Estimates of the reactivation rates are quantitatively close in models with high support

(Models E-F). Reactivation rates generally increase with increasing age, and are substantially

Fig 5. Parameter estimates. Shown are kernel-smoothed posterior distributions of the relative susceptibility to re-

infection (z), the transmissibility of primary infection (β1) and reactivation/re-infection (β2), and the reactivation rates

in persons aged 0-20 years (ρ[0,20), purple: females; brown: males), 20-50 years (ρ[20,50)), and 50-80 years (ρ[50

− 80)) of the transmission model with the possibility of multiple reactivations and re-infections (Model E in Table 1).

https://doi.org/10.1371/journal.pcbi.1005719.g005
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higher in females than in males. In the preferred model (Model E), the estimated reactivation

rate is 0.013 per year (95%CrI: 0.0042-0.021) in 0-20 year-old females, which increases to 0.021

per year (95%CrI: 0.013-0.029) in 20-50 year-old females, and then increases further to 0.028

per year (95%CrI: 0.017-0.040) in 50 + -year-old females (Table 2). The corresponding reacti-

vation rates in males are 0.0054 per year (95%CrI: 0.0035-0.013), 0.011 per year (95%CrI:

0.0035-0.018), and 0.013 per year (95%CrI: 0.0043-0.021). These estimates are slightly higher

and slightly more precise in the model without re-infection (Model F), and somewhat higher

in models with a single reactivation/re-infection event (Models A-B).

In the two models with highest support (Models E-F), estimates of the force of infection

increase from approximately 0.012-0.013 per year in the youngest age group to 0.014-0.017 per

year in 10-15 year-old girls (Fig 6). Owing to the slightly higher contact rates in females than

in men, the estimated force of infection is usually slightly higher in females than in males in

the age groups 10-25 years [32]. In older age groups, estimates of the forces of infection

decrease to lower values (�0.01 per year). Noteworthy, the extreme age-specific differences in

the force of infection usually observed for directly transmitted infectious diseases, with high

infection rates in children and much lower rates in adults, are much less pronounced here due

to infectious reactivation in older age strata combined with age-assortative mixing [32, 34, 35].

In models with re-infection, estimates of re-infection rate (zλi(a)) are considerably smaller

than estimates of the reactivation rates (ρi(a)) because the estimated forces of infection (λi(a))

are usually lower than the reactivation rates, especially in females (Fig 6). Hence, re-infection

contributes little to boosting of the antibody concentrations in those age groups where most of

the boosting occurs (>20 years; Fig 4). In fact, in adult females it is not uncommon that the

reactivation rate is more than an order of magnitude higher than the estimated re-infection

rate (log10(ρ♀(a)/(zλ♀(a)))> 1).

Discussion

Our study of population-wide serological data shows that IgG antibody concentrations contain

a wealth of information on the transmission dynamics of CMV. Specifically, the analyses reveal

that (i) the prevalence of CMV increases gradually with age such that at old age the majority of

Table 2. Parameter estimates of the transmission model.

Parameter Description Median 95%CrI

β1 Transmissibility of primary infection 0.0019 0.000081—0.0089

β2 Transmissibility of re-infection/reactivation 0.042 0.035—0.049

z Relative susceptibility for re-infection 0.32 0.017—0.84

r♀
½0;20Þ

Reactivation rate in 0-20 year old females (yr−1) 0.013 0.0042—0.021

r♀
½20;50Þ

Reactivation rate in 20-50 year old females (yr−1) 0.021 0.013—0.029

r♀
½50;80Þ

Reactivation rate in 50-80 year old females (yr−1) 0.028 0.017—0.040

r♂
½0;20Þ

Reactivation rate in 0-20 year old males (yr−1) 0.0054 0.0035—0.013

r♂
½20;50Þ

Reactivation rate in 20-50 year old males (yr−1) 0.011 0.0035—0.018

r♂
½50;80Þ

Reactivation rate in 50-80 year old males (yr−1) 0.013 0.0043—0.021

μρ Hyperparameter for the reactivation rate (mean) 0.015 0.0047—0.027

σρ Hyperparameter for the reactivation rate (sd) 0.010 0.0050—0.028

Parameters estimates (represented by posterior medians with 95% credible intervals) are shown of the transmission model with reactivation and re-infection

in the B compartment (model E). This model gives the best fit to the data, as judged by WBIC and WAIC (Table 1). For all parameters the potential scale

reduction factor Q is close to 1 (0.999 < Q < 1.001), and effective sample sizes of the parameters neff range from 3596 (β1) to 4457 (μρ).

https://doi.org/10.1371/journal.pcbi.1005719.t002
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persons in the Netherlands are infected; (ii) except for the very young, the prevalence of CMV is

systematically higher in females than in males. This is mainly due to a higher incidence of infec-

tion in adult women than in adult men of similar age; (iii) antibody concentrations in seroposi-

tive (i.e. infected) persons increase monotonically with age, especially in women; (iv) the above

findings (i)-(iii) cannot be explained by simple transmission models in which only primary

infection is infectious. This is caused by the fact that transmissibility of primary infection deter-

mines the rate at which age-specific prevalence increases; if transmissibility of primary infection

would be high then a high prevalence of infection is expected in children. In other words, the

fact that seroprevalence increases gradually with age puts an upper bound on the force of infec-

tion, and this in turn constrains the transmissibility of primary infection to low values.

While aforementioned findings (i)-(iii) have been noticed before in other settings ([1] and

references therein, [21]), our analyses are the first to provide precise estimates using a large

Fig 6. The force of infection and magnitude of reactivation relative to re-infection. The top panel shows

posterior estimates of the forces of infection in females and males in Model E (Table 1; purple: females;

brown: males). The bottom panel shows the log10 of the reactivation rates divided by the re-infection rates

(ρi(a)/zλi(a) with i 2 {♀,♂}). Results are shown for 250 samples from the posterior distribution.

https://doi.org/10.1371/journal.pcbi.1005719.g006
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population sample. Moreover, the results lead us to a new transmission hypothesis in which

infectious reactivation is a key driver of transmission of CMV in the population. Since several

other studies have found a gradual increase in seroprevalence [1], this explanation may not be

restricted to the Dutch situation, but hold in general. Underpinning this hypothesis, next to

the well-known observations of shedding of CMV in breast milk and cervical material in the

third trimester of pregnancy [45–47], detectable virus also has been found in healthy adults in

one study [24], while in another study CMV DNA has been detected in urine of the majority

of older persons [23].

The main implication is that the majority of CMV infections may not be caused by trans-

mission among children after primary infection, even though levels of shedding can be high in

infants [46, 48], but rather by older persons who go through one or more reactivation episodes.

This contrasts with common childhood diseases such as measles, mumps, rubella, and pertus-

sis. For these pathogens, infection in unvaccinated populations generally occurs at a young

age, and children are the drivers of transmission. It also contrasts with other herpes viruses

such as varicella zoster virus and Epstein-Bar virus for which well over 50% of the population

is infected at the age of 10 years [34]. It may be comparable with other herpes viruses such as

HSV1 and HSV2, which show a slowly increasing age-specific seroprevalence [49]. A corollary

is that persistence of CMV in the population is not possible with transmission from primary

infected persons only, and is dependent on infectious reactivation. Currently, we are focusing

on making this idea more precise by calculation of the basic reproduction number, and the

reproduction numbers of perinatal transmission, primary infection, and reactivation [50].

This will help put bounds on the relative contribution of each of the transmission routes.

With infectious reactivation and perinatal infection being putative drivers of transmission,

it is to be expected that elimination by vaccination may prove more difficult than for directly

transmitted pathogens, as it will require the pool of latently infected persons to dwindle to zero

by demographic turnover. This can take up to the lifetime of one generation, and perhaps

more if vaccination cannot prevent perinatal transmission to infants who are too young for

vaccination. Thus, a question is whether vaccination formulations and strategies exist that

minimize the probability of transmission to young infants. This is all the more of importance

as a main source of morbidity is by congenital infection, and the timescale on which reduc-

tions in congenital disease are expected determines the projected health impact of vaccination

[51]. In this context, next to the ability of a vaccine to prevent infection it may perhaps be

equally important that a vaccine is able to reduce the probability of reactivation. Such reduc-

tions are likely mediated by T-cell responses of the host, and several (but not all) vaccines

under development are expected to induce boosting of T-cell immune responses [52–54].

A number of limitations and assumptions deserve scrutiny. First, the transmission model

analyses assume that the population is in endemic equilibrium. For a single cross-sectional

data set such as the one considered in the present study this assumption is unavoidable if one

does not want to introduce additional parameters that cannot be estimated by the data. Reas-

suringly, the patterns of infection present in the serological data have been found in several

serological studies carried out in high-income countries over the past decades [1]. Also, no sys-

tematic patterns of increasing or decreasing seroprevalence over time have been found, and

this is further reason to believe that there have not been major changes in the epidemiology of

CMV over time [1]. Second, we assume that antibody measurements not only give information

on CMV infection status, but also whether or not reactivation or re-infection have taken place.

Unfortunately, there is no direct empirical evidence confirming or falsifying this assumption,

and this is an area where in-depth comparison of the infection and immune status of persons

with low and high antibody concentrations is urgently needed. Third, the analyses assume that

person-to-person transmission is proportional to observed human contact patterns [32, 33].
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Although this assumption is commonly made and has met with considerable success (e.g., [33,

44, 55, 56]), it is conceivable that transmission of CMV does not abide by the social contact

hypothesis, and that a more complex contact structure would be able to explain the patterns of

seroprevalence in a simple transmission model. To investigate the impact of the contact struc-

ture, we have analyzed transmission models with a uniform contact structure, and found that

models with infectious reactivation still provide the best fit to the data (ΔWAIC> 100;

Results). As a final limitation we would like to add that, in principle, it is conceivable that the

data can be explained alternatively by an intricate interplay between variation in the suscepti-

bility to infection in conjunction with age-specific variations in the strength of the antibody

response. Alas, evidence for or against this hypothesis is lacking.

Our inferential analyses indicate that the transmissibility of primary infection is much

lower than the transmissibility after reactivation. This seems to be at odds with the observation

that prolonged and high-level virus shedding can occur in bodily fluids after primary infection

in children [46, 47]. However, it could be that transitions from the infected class to the infected

class with increased antibodies are in effect not the result of a single reactivation or re-infection

event, but rather the result of multiple underlying reactivations or re-infections. If this were

true, as seems plausible, estimates of the reactivation and re-infection rates as well as the trans-

missibility of reactivation and re-infection should be interpreted as compound parameters that

take into account multiple reactivations and re-infections occurring over the lifetime of an

infected person.
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