31 research outputs found

    Trait–demography relationships underlying small mammal population fluctuations

    Get PDF
    1.Large-scale fluctuations in abundance are a common feature of small mammal populations and have been the subject of extensive research. These demographic fluctuations are often associated with concurrent changes in the average body mass of individuals, sometimes referred to as the “Chitty effect”. Despite the long-standing recognition of this phenomenon, an empirical investigation of the underlying coupled dynamics of body mass and population growth has been lacking. 2.Using long-term life-history data combined with a trait-based demographic approach, we examined the relationship between body mass and demography in a small mammal population that exhibits non-cyclic, large-scale fluctuations in abundance. We used data from the male segment of a 25-year study of the monogamous prairie vole, Microtus ochrogaster, in Illinois, USA. Specifically, we investigated how trait–demography relationships and trait distributions changed between different phases of population fluctuations, and the consequences of these changes for both trait and population dynamics. 3.We observed phase-specific changes in male adult body mass distribution in this population of prairie voles. Our analyses revealed that these changes were driven by variation in ontogenetic growth, rather than selection acting on the trait. The resulting changes in body mass influenced most life-history processes, and these effects varied among phases of population fluctuation. However, these changes did not propagate to affect the population growth rate due to the small effect of body mass on vital rates, compared to the overall differences in vital rates between phases. The increase phase of the fluctuations was initiated by enhanced survival, particularly of juveniles, and fecundity whereas the decline phase was driven by an overall reduction in fecundity, survival and maturation rates. 4.Our study provides empirical support, as well as a potential mechanism, underlying the observed trait changes accompanying population fluctuations. Body size dynamics and population fluctuations resulted from different life-history processes. Therefore, we conclude that body size dynamics in our population do not drive the observed population dynamics. This more in-depth understanding of different components of small mammal population fluctuations will help us to better identify the mechanistic drivers of this interesting phenomenon

    Гибридная интегральная схема для обработки звукового сигнала

    Get PDF
    Разработана гибридная интегральная схема с номинальным напряжением питания 1,4 В, током потребления 0,7 мА и габаритными размерами 8x4x3 мм для обработки звукового сигнала в автономной аппаратуре.Розроблена гібридна інтегральна схема з номінальною напругою живлення 1,4 В, струмом споживання 0,7 мА і габаритними розмірами 8x4x3 мм забезпечує багатофункціональну обробку звуковою сигналу в аналоговій мікроелектронній апаратурі. Наведено її конструкторсько-технологічні та електричні параметри.Developed hybrid integrated circuit with rated supply voltage of 1,4 V, current consumption 0,7 mA and overall dimensions 8x4x3 mm provides soft processing of the audio signal in analog microelectronic equipment. Given its design, technological and electrical parameters

    Density dependence on multiple spatial scales maintains spatial variation in both abundance and traits

    No full text
    van Benthem K, Wittmann M. Density dependence on multiple spatial scales maintains spatial variation in both abundance and traits. Journal of Theoretical Biology. 2020;491: 110142.Population density affects fitness through various processes, such as mate finding and competition. The fitness of individuals in a population can in turn affect its density, making population density a key quantity linking ecological and evolutionary processes. Density effects are, however, rarely homogeneous. Different life-history processes can be affected by density over different spatial scales. In birds, for example, competition for food may depend on the number of birds nesting in the direct vicinity, while competition for nesting sites may occur over larger areas. Here we investigate how the effects of local density and of density in a nearby patch can jointly affect the emergence of spatial variation in abundance as well as phenotypic diversification. We study a two-patch model that is described by coupled ordinary differential equations. The patches have no intrinsic differences: they both have the same fitness function that describes how an individual’s fitness depends on density in its own patch as well as the density in the other patch. We use a phase-space analysis, combined with a mathematical stability analysis to study the long-term behaviour of the system. Our results reveal that the mutual effect that the patches have on each other can lead to the emergence and long-term maintenance of a low and a high density patch. We then add traits and mutations to the model and show that different selection pressures in the high and low density patch can lead to diversification between these patches. Via eco-evolutionary feedbacks, this diversification can in turn lead to changes in the long-term population densities: under some parameter settings, both patches reach the same equilibrium density when mutations are absent, but different equilibrium densities when mutations are allowed. We thus show how, even in the absence of differences between patches, interactions between them can lead to differences in long-term population density, and potentially to trait diversification

    Multi-scale effects of habitat loss and the role of trait evolution

    No full text
    Bagawade R, van Benthem K, Wittmann M. Multi-scale effects of habitat loss and the role of trait evolution. Ecology and Evolution. 2024;14(1): e10799.Habitat loss (HL) is a major cause of species extinctions. Although the effects of HL beyond the directly impacted area have been previously observed, they have not been modelled explicitly, especially in an eco-evolutionary context. To start filling this gap, we study a two-patch deterministic consumer-resource model, with one of the patches experiencing loss of resources as a special case of HL. Our model allows foraging and mating within a patch as well as between patches. We then introduce heritable variation in consumer traits related to resource utilization and patch use to investigate eco-evolutionary dynamics and compare results with constant and no trait variation scenarios. Our results show that HL in one patch can indeed reduce consumer densities in the neighbouring patch but can also increase consumer densities in the neighbouring patch when the resources are overexploited. Yet at the landscape scale, the effect of HL on consumer densities is consistently negative. Patch isolation increases consumer density in the patch experiencing HL but has generally negative effects on the neighbouring patch, with context-dependent results at the landscape scale. With high cross-patch dependence and coupled foraging and mating preferences, local HL can sometimes even lead to landscape-level consumer extinction. Eco-evolutionary dynamics can rescue consumers from such extinction in some cases if their death rates are sufficiently small. More generally, trait evolution had positive or negative effects on equilibrium consumer densities after HL, depending on the evolving trait and the spatial scale considered. In summary, our findings show that HL at a local scale can affect the neighbouring patch and the landscape as a whole, where heritable trait variation can, in some cases, alleviate the impact of HL. We thus suggest joint consideration of multiple spatial scales and trait variation when assessing and predicting the impacts of HL. © 2024 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd

    Waiting for love but not forever: modelling the evolution of waiting time to selfing in hermaphrodites

    Get PDF
    Blüml C, Ramm S, van Benthem K, Wittmann M. Waiting for love but not forever: modelling the evolution of waiting time to selfing in hermaphrodites. bioRxiv. 2020.**Abstract** Although mixed mating systems involving both selfing and outcrossing are fairly common in hermaphrodites, it is unclear how they are maintained. In some species, individuals delay self-fertilization while they have not found a mating partner. The ‘waiting time’ is subject to two opposing selection pressures: waiting helps to avoid inbreeding depression in offspring by increasing the density-dependent probability to encounter a mate, but also increases the risk of dying before reproduction. In some species waiting time can vary between individuals and be heritable. We therefore used an individual-based model to explore how delayed selfing evolves in response to density and density fluctuations. We find that at high density, when individuals meet often, drift drives waiting time; at intermediate densities, strong inbreeding depression causes waiting time to increase; and at low densities, inbreeding depression is purged, and waiting time approaches zero. Positive feedback loops drive the system to either complete selfing or complete outcrossing. Fluctuating density can slow down convergence to these alternative stable states. However, mixed mating, in the sense of either a stable polymorphism in waiting times, or stable intermediate times, was never observed. Thus, additional factors need to be explored to explain the persistence of delayed selfing

    Are generic early-warning signals reliable indicators of population collapse in rotifers?

    Full text link
    Timely identification of endangered populations is vital to save them from extirpation. Here we tested whether six commonly used early-warning metrics are useful predictors of impending extirpation in laboratory rotifer (Brachionus calyciflorus) populations. To this end, we cultured nine rotifer clones in a constant laboratory environment, in which the rotifer populations were known to grow well, and in a deteriorating environment, in which the populations eventually perished. We monitored population densities in both environments until the populations in the deteriorating environment had gone extinct. We then used the population-density time series to compute the early-warning metrics and the temporal trends in these metrics. We found true positives (i.e. correct signals) in only two metrics, the standard deviation and the coefficient of variation, but the standard deviation also generated a false positive. Moreover, the signal produced by the coefficient of variation appeared when the populations in the deteriorating environment were about to cross the critical threshold and began to decline. As such, it cannot be regarded as an early-warning signal. Together, these findings support the growing evidence that density-based generic early-warning metrics—against their intended use—might not be universally suited to identify populations that are about to collapse

    Density feedbacks mediate effects of environmental change on population dynamics of a semidesert rodent

    Full text link
    Population dynamics are the result of an interplay between extrinsic and intrinsic environmental drivers. Predicting the effects of environmental change on wildlife populations therefore requires a thorough understanding of the mechanisms through which different environmental drivers interact to generate changes in population size and structure. In this study, we disentangled the roles of temperature, food availability and population density in shaping short‐ and long‐term population dynamics of the African striped mouse, a small rodent inhabiting a semidesert with high intra‐ and interannual variation in environmental conditions. We parameterized a female‐only stage‐structured matrix population model with vital rates depending on temperature, food availability and population density, using monthly mark–recapture data from 1609 mice trapped over 9 years (2005–2014). We then applied perturbation analyses to determine relative strengths and demographic pathways of these drivers in affecting population dynamics. Furthermore, we used stochastic population projections to gain insights into how three different climate change scenarios might affect size, structure and persistence of this population. We identified food availability, acting through reproduction, as the main driver of changes in both short‐ and long‐term population dynamics. This mechanism was mediated by strong density feedbacks, which stabilized the population after high peaks and allowed it to recover from detrimental crashes. Density dependence thus buffered the population against environmental change, and even adverse climate change scenarios were predicted to have little effect on population persistence (extinction risk over 100 years <5%) despite leading to overall lower abundances. Explicitly linking environment–demography relationships to population dynamics allowed us to accurately capture past population dynamics. It further enabled establishing the roles and relative importances of extrinsic and intrinsic environmental drivers, and we conclude that doing this is essential when investigating impacts of climate change on wildlife populations

    Multi-scale simulation of degradation of polymer coatings: Thermo-mechanical simulations

    Get PDF
    In this work we simulate the full sequence of steps that are also typically performed in an experimental approach when studying photo-degradation of a polymer coating, namely, i) sample preparation, ii) photo-degradation and iii) thermo-mechanical analysis of the material during photo-degradation. In the current paper, we focus on performing several molecular dynamics simulations to study the thermo-mechanical properties of a virgin thermoset coating as well as degraded ones. Using an atomistic structure that is obtained by fine-graining the mesoscopic structure, we obtain consistent correlations between the simulated thermo-mechanical properties of the material and those measured experimentally. In addition, it is shown that by using oscillatory strain fields in MD - instead of the commonly applied linear tensile/compression strain fields - one can acquire greater knowledge on the structure-property relation of polymeric materials. Eventually, we show that our simulation approach gives rise to a remarkable insight into the mechanism of the photo-degradation process
    corecore