130 research outputs found

    Limited capacity to lie: Cognitive load interferes with being dishonest

    Get PDF
    The current study tested the boundary conditions of ethical decision-making by increasing cognitive load. This manipulation is believed to hinder deliberation, and, as we argue, reduces the cognitive capacity needed for a self-serving bias to occur. As telling a lie is believed to be more cognitively taxing than telling the truth, we hypothesized that participants would be more honest under high cognitive load than low cognitive load. 173 participants anonymously rolled a die three times and reported their outcomes — of which one of the rolls would be paid out — while either under high or low cognitive load. For the roll that determined pay, participants under low cognitive load, but not under high cognitive load, reported die rolls that were significantly different from a uniform (honest) distribution. The reported outcome of this roll was also significantly higher in the low load condition than in the high load condition, suggesting that participants in the low load condition lied to get higher pay. This pattern was not observed for the second and third roll where participants knew the rolls were not going to be paid out and where therefore lying would not serve self-interest. Results thus indicate that having limited cognitive capacity will unveil a tendency to be honest in a situation where having more cognitive capacity would have enabled one to serve self-interest by lying

    Perspectives on Scientific Error

    Get PDF
    Theoretical arguments and empirical investigations indicate that a high proportion of published findings do not replicate and are likely false. The current position paper provides a broad perspective on scientific error, which may lead to replication failures. This broad perspective focuses on reform history and on opportunities for future reform. We organize our perspective along four main themes: institutional reform, methodological reform, statistical reform and publishing reform. For each theme, we illustrate potential errors by narrating the story of a fictional researcher during the research cycle. We discuss future opportunities for reform. The resulting agenda provides a resource to usher in an era that is marked by a research culture that is less error-prone and a scientific publication landscape with fewer spurious findings

    The Proper Motion of the Globular Cluster NGC 6553 and of Bulge Stars with HST

    Full text link
    WFPC2 images obtained with the Hubble Space telescope 4.16 years apart have allowed us to measure the proper motion of the metal rich globular cluster NGC 6553 with respect to the background bulge stars. With a space velocity of (Π,Θ,W{\Pi}, {\Theta}, W) = (-3.5, 230, -3) km s1^{-1}, NGC 6553 follows the mean rotation of both disk and bulge stars at a Galactocentric distance of 2.7 kpc. While the kinematics of the cluster is consistent with either a bulge or a disk membership, the virtual identity of its stellar population with that of the bulge cluster NGC6528 makes its bulge membership more likely. The astrometric accuracy is high enough for providing a measure of the bulge proper motion dispersion and confirming its rotation. A selection of stars based on the proper motions produced an extremely well defined cluster color-magnitude diagram (CMD), essencially free of bulge stars. The improved turnoff definition in the decontaminated CMD confirms an old age for the cluster (~13 Gyr) indicating that the bulge underwent a rapid chemical enrichment while being built up at in the early Universe. An additional interesting feature of the cluster color-magnitude diagram is a significant number of blue stragglers stars, whose membership in the cluster is firmly established from their proper motions.Comment: version with full-page figure

    The Process of Replication Target Selection in Psychology: What to Consider?

    Get PDF
    Increased execution of replication studies contributes to the effort to restore credibility of empirical research. However, a second generation of problems arises: the number of potential replication targets is at a serious mismatch with available resources. Given limited resources, replication target selection should be well justified, systematic, and transparently communicated. At present the discussion on what to consider when selecting a replication target is limited to theoretical discussion, self-reported justifications, and a few formalized suggestions. In this Registered Report, we proposed a study involving the scientific community to create a list of considerations for consultation when selecting a replication target in psychology. We employed a modified Delphi approach. First, we constructed a preliminary list of considerations. Second, we surveyed psychologists who previously selected a replication target with regards to their considerations. Third, we incorporated the results into the preliminary list of considerations and sent the updated list to a group of individuals knowledgeable about concerns regarding replication target selection. Over the course of several rounds, we established consensus regarding what to consider when selecting a replication target

    Expression profiling with RNA from formalin-fixed, paraffin-embedded material

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular characterization of breast and other cancers by gene expression profiling has corroborated existing classifications and revealed novel subtypes. Most profiling studies are based on fresh frozen (FF) tumor material which is available only for a limited number of samples while thousands of tumor samples exist as formalin-fixed, paraffin-embedded (FFPE) blocks. Unfortunately, RNA derived of FFPE material is fragmented and chemically modified impairing expression measurements by standard procedures. Robust protocols for isolation of RNA from FFPE material suitable for stable and reproducible measurement of gene expression (e.g. by quantitative reverse transcriptase PCR, QPCR) remain a major challenge.</p> <p>Results</p> <p>We present a simple procedure for RNA isolation from FFPE material of diagnostic samples. The RNA is suitable for expression measurement by QPCR when used in combination with an optimized cDNA synthesis protocol and TaqMan assays specific for short amplicons. The FFPE derived RNA was compared to intact RNA isolated from the same tumors. Preliminary scores were computed from genes related to the ER response, HER2 signaling and proliferation. Correlation coefficients between intact and partially fragmented RNA from FFPE material were 0.83 to 0.97.</p> <p>Conclusion</p> <p>We developed a simple and robust method for isolating RNA from FFPE material. The RNA can be used for gene expression profiling. Expression measurements from several genes can be combined to robust scores representing the hormonal or the proliferation status of the tumor.</p
    corecore