190 research outputs found

    Long term movements and activity patterns of an Antarctic marine apex predator: the Leopard Seal

    Get PDF
    Leopard seals are an important Antarctic apex predator that can affect marine ecosystems through local predation. Here we report on the successful use of micro geolocation logging sensor tags to track the movements, and activity, of four leopard seals for trips of between 142–446 days including one individual in two separate years. Whilst the sample size is small the results represent an advance in our limited knowledge of leopard seals. We show the longest periods of tracking of leopard seals’ migratory behaviour between the pack ice, close to the Antarctic continent, and the sub-Antarctic island of South Georgia. It appears that these tracked animals migrate in a directed manner towards Bird Island and, during their residency, use this as a central place for foraging trips as well as exploiting the local penguin and seal populations. Movements to the South Orkney Islands were also recorded, similar to those observed in other predators in the region including the krill fishery. Analysis of habitat associations, taking into account location errors, indicated the tracked seals had an affinity for shallow shelf water and regions of sea ice. Wet and dry sensors revealed that seals hauled out for between 22 and 31% of the time with maximum of 74 hours and a median of between 9 and 11 hours. The longest period a seal remained in the water was between 13 and 25 days. Fitting GAMMs showed that haul out rates changed throughout the year with the highest values occurring during the summer which has implications for visual surveys. Peak haul out occurred around midday for the months between October and April but was more evenly spread across the day between May and September. The seals’ movements between, and behaviour within, areas important to breeding populations of birds and other seals, coupled with the dynamics of the region’s fisheries, shows an understanding of leopard seal ecology is vital in the management of the Southern Ocean resources

    Multi-scale assessment of distribution and density of procellariiform seabirds within the Northern Antarctic Peninsula marine ecosystem

    Get PDF
    The Antarctic Peninsula is one of the most rapidly warming regions on earth, and it is likely that the abundance and distribution of marine predators will change as a result.Procellariiform seabirds are highly mobile predators, which target specific habitat characteristics associated with underlying distributions of prey and areas of increased prey availability. We use ship surveys and hurdle models, to estimate the summer distribution and relative density of 11 seabird species within the northern Antarctic Peninsula marine ecosystem. Models differed among species; however, sea surface temperature and depth were frequently associated with seabird occurrence and had the greatest explanatory power across many species. Null models based on observation data were better at predicting seabird density than models that included environmental covariates. This suggests that the main driver of distribution patterns is the broad-scale habitat features, and fine-scale aggregations within these ranges are harder to predict. Our seabird distribution models reflect known habitat associations, species hotspots, and community organization relative to oceanic and coastal marine processes. Application of species distribution models will benefit the assessments of critical habitat and potential responses to climate change and anthropogenic disturbance, which will provide insight into how species may change in polar ecosystems

    Emperor penguins breeding on iceshelves

    Get PDF
    We describe a new breeding behaviour discovered in emperor penguins; utilizing satellite and aerial-survey observations four emperor penguin breeding colonies have been recorded as existing on ice-shelves. Emperors have previously been considered as a sea-ice obligate species, with 44 of the 46 colonies located on sea-ice (the other two small colonies are on land). Of the colonies found on ice-shelves, two are newly discovered, and these have been recorded on shelves every season that they have been observed, the other two have been recorded both on ice-shelves and sea-ice in different breeding seasons. We conduct two analyses; the first using synthetic aperture radar data to assess why the largest of the four colonies, for which we have most data, locates sometimes on the shelf and sometimes on the sea-ice, and find that in years where the sea-ice forms late, the colony relocates onto the ice-shelf. The second analysis uses a number of environmental variables to test the habitat marginality of all emperor penguin breeding sites. We find that three of the four colonies reported in this study are in the most northerly, warmest conditions where sea-ice is often sub-optimal. The emperor penguin’s reliance on sea-ice as a breeding platform coupled with recent concerns over changed sea-ice patterns consequent on regional warming, has led to their designation as “near threatened” in the IUCN red list. Current climate models predict that future loss of sea-ice around the Antarctic coastline will negatively impact emperor numbers; recent estimates suggest a halving of the population by 2052. The discovery of this new breeding behaviour at marginal sites could mitigate some of the consequences of sea-ice loss; potential benefits and whether these are permanent or temporary need to be considered and understood before further attempts are made to predict the population trajectory of this iconic species

    Linear tracks and restricted temperature ranges characterise penguin foraging pathways

    Get PDF
    Marine predators are thought to follow sophisticated scale-dependent search strategies when seeking patchy and unpredictable prey. However, fine-scale information about these strategies has hitherto been difficult to obtain for diving predators that often remain at the sea surface for only limited periods of time. Using ARGOS telemetry and novel, low-powered, archival GPS, we followed the fine-scale at-sea behaviour of king penguins breeding on South Georgia. Results revealed that foraging pathways were generally linear, except at the finest scale, where movements probably reflected either fine-scale searching behaviour, or fine-scale random movements associated with having found prey. King penguins focused 45% of their foraging effort in waters with a specific surface temperature (5.0 to 5.5 degrees C) - an environmental cue potentially important in helping them locate prey, thereby reducing their need to expend energy in area-restricted search patterns. Within these waters, penguins slowed down and increased their dive effort and degree of meandering. First Passage Time analysis revealed that penguins focused much of their effort at local scales, generally in areas with a radius of 2 km. In these areas, penguins dived marginally deeper and targeted waters that, were significantly warmer at the bottom of their dives. Such information about fine-scale foraging behaviour will help increase our understanding of the environmental correlates that characterise areas where marine predators exploit their prey. The scale of these behavioural processes is better resolved using the fine-scale temporal and spatial resolution of GPS tracking data

    Foraging behavior of Adelie penguins in various sea ice conditions in Signy Island, South Orkney Islands

    Get PDF
    第2回極域科学シンポジウム/第33回極域生物シンポジウム 11月17日(木) 統計数理研究所 3階リフレッシュフロ

    Corticosterone predicts foraging behavior and parental care in Macaroni Penguins

    Get PDF
    Corticosterone has received considerable attention as the principal hormonal mediator of allostasis or physiological stress in wild animals. More recently, it has also been implicated in the regulation of parental care in breeding birds, particularly with respect to individual variation in foraging behaviour and provisioning effort. There is also evidence that prolactin can work either inversely or additively with corticosterone to achieve this. Here we test the hypothesis that endogenous corticosterone plays a key physiological role in the control of foraging behaviour and parental care using a combination of exogenous corticosterone treatment, time-depth telemetry, and physiological sampling of female macaroni penguins (Eudyptes chrysolophus) during the brood-guard period of chick rearing, while simultaneously monitoring patterns of prolactin secretion. Plasma corticosterone levels were significantly higher in females given exogenous implants relative to those receiving sham implants. Increased corticosterone levels were associated with significantly higher levels of foraging and diving activity, and greater mass gain in implanted females. Elevated plasma corticosterone was also associated with an apparent fitness benefit in the form of increased chick mass. Plasma prolactin levels did not correlate with corticosterone levels at any time, nor was prolactin correlated with any measure of foraging behaviour or parental care. Our results provide support for the corticosterone-adaptation hypothesis, which predicts that higher corticosterone levels support increased foraging activity and parental effort

    Return customers: foraging site fidelity and the effect of environmental variability in wide-ranging Antarctic fur seals

    Get PDF
    Strategies employed by wide-ranging foraging animals involve consideration of habitat quality and predictability and should maximise net energy gain. Fidelity to foraging sites is common in areas of high resource availability or where predictable changes in resource availability occur. However, if resource availability is heterogeneous or unpredictable, as it often is in marine environments, then habitat familiarity may also present ecological benefits to individuals. We examined the winter foraging distribution of female Antarctic fur seals, Arctocephalus gazelle, over four years to assess the degree of foraging site fidelity at two scales; within and between years. On average, between-year fidelity was strong, with most individuals utilising more than half of their annual foraging home range over multiple years. However, fidelity was a bimodal strategy among individuals, with five out of eight animals recording between-year overlap values of greater than 50%, while three animals recorded values of less than 5%. High long-term variance in sea surface temperature, a potential proxy for elevated long-term productivity and prey availability, typified areas of overlap. Within-year foraging site fidelity was weak, indicating that successive trips over the winter target different geographic areas. We suggest that over a season, changes in prey availability are predictable enough for individuals to shift foraging area in response, with limited associated energetic costs. Conversely, over multiple years, the availability of prey resources is less spatially and temporally predictable, increasing the potential costs of shifting foraging area and favouring long-term site fidelity. In a dynamic and patchy environment, multi-year foraging site fidelity may confer a long-term energetic advantage to the individual. Such behaviours that operate at the individual level have evolutionary and ecological implications and are potential drivers of niche specialization and modifiers of intra-specific competition

    Updating the Antarctic krill biomass estimates for CCAMLR Subareas 48.1 to 48.4 using available data

    Get PDF
    -We present a novel index of Antarctic krill biomass in CCAMLR subareas 48.1 to 48.4, based on data from scientific nets and covering the years between 2000 and 2011. The annual biomass variation was significant (CV=73%) but no systematic change in krill biomass was evident during the period. The index also suggests that realised exploitation rates were below 0.5% (i.e. catch was <0.5% of biomass) and that the potential exploitation rates implied by the operational catch limit (the trigger level) were below 2% during this period. These exploitation rates are much lower than the precautionary yield estimate for the krill fishery (which is 9.3%). Biomass indices from local scale acoustic surveys also suggest that exploitation rates are low and that there is no evidence of a systematic change in the krill stock. This evidence suggests that the trigger level is a highly precautionary operational catch limit which is currently appropriate for achieving the conservation criteria for the krill stock. It also suggests that the catch levels seen in the first decade of the 21st century are unlikely to have adversely impacted the krill stock. Nonetheless the Commission also needs to manage the risk of adverse impacts on dependent and related populations which might occur if fishing is concentrated in sensitive areas. Advances are needed to improve management of krill fisheries to manage these risks and to ensure that management is robust to the potential impacts of climate change. We suggest that frequent assessment of the krill stock, at scales relevant to the Commission’s conservation objectives, is a prerequisite for such advances. The most effective means to achieve this is likely to be through increased use of fishing vessels to collect data, while maintaining current time serie

    Quantifying the causes and consequences of variation in satellite-derived population indices: a case study of emperor penguins

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Labrousse, S., Iles, D., Viollat, L., Fretwell, P., Trathan, P. N., Zitterbart, D. P., Jenouvrier, S., & LaRue, M. Quantifying the causes and consequences of variation in satellite-derived population indices: a case study of emperor penguins. Remote Sensing in Ecology and Conservation, (2021), https://doi.org/10.1002/rse2.233.Very high-resolution satellite (VHR) imagery is a promising tool for estimating the abundance of wildlife populations, especially in remote regions where traditional surveys are limited by logistical challenges. Emperor penguins Aptenodytes forsteri were the first species to have a circumpolar population estimate derived via VHR imagery. Here we address an untested assumption from Fretwell et al. (2012) that a single image of an emperor penguin colony is a reasonable representation of the colony for the year the image was taken. We evaluated satellite-related and environmental variables that might influence the calculated area of penguin pixels to reduce uncertainties in satellite-based estimates of emperor penguin populations in the future. We focused our analysis on multiple VHR images from three representative colonies: Atka Bay, Stancomb-Wills (Weddell Sea sector) and Coulman Island (Ross Sea sector) between September and December during 2011. We replicated methods in Fretwell et al. (2012), which included using supervised classification tools in ArcGIS 10.7 software to calculate area occupied by penguins (hereafter referred to as ‘population indices’) in each image. We found that population indices varied from 2 to nearly 6-fold, suggesting that penguin pixel areas calculated from a single image may not provide a complete understanding of colony size for that year. Thus, we further highlight the important roles of: (i) sun azimuth and elevation through image resolution and (ii) penguin patchiness (aggregated vs. distributed) on the calculated areas. We found an effect of wind and temperature on penguin patchiness. Despite intra-seasonal variability in population indices, simulations indicate that reliable, robust population trends are possible by including satellite-related and environmental covariates and aggregating indices across time and space. Our work provides additional parameters that should be included in future models of population size for emperor penguins.Geospatial support for this work was provided by the Polar Geospatial Center under NSF-OPP awards 1043681 and 1559691. NCAR- PPC visitor funds and Ian Nisbet that supported the internship of LV. WWF-UK supported PNT and PTF under grant GB095701. DZ was supported by The Penzance Endowed Fund and The Grayce B. Kerr Fund in Support of Assistant Scientists. To SJ, ML, SL, LV, NSF OPP 1744794
    corecore