8 research outputs found

    Oscillatory relaxation of zonal flows in a multi-species stellarator plasma

    Full text link
    The low frequency oscillatory relaxation of zonal potential perturbations is studied numerically in the TJ-II stellarator (where it was experimentally detected for the first time). It is studied in full global gyrokinetic simulations of multi-species plasmas. The oscillation frequency obtained is compared with predictions based on single-species simulations using simplified analytical relations. It is shown that the frequency of this oscillation for a multi-species plasma can be accurately obtained from single-species calculations using extrapolation formulas. The damping of the oscillation and the influence of the different inter-species collisions is studied in detail. It is concluded that taking into account multiple kinetic ions and electrons with impurity concentrations realistic for TJ-II plasmas allows to account for the values of frequency and damping rate in zonal flows relaxations observed experimentally.Comment: 11 figures, 22 page

    Filaments in the edge confinement region of TJ-II

    No full text
    Floating potential measurements from two remote reciprocating probes in the plasma edge region of the TJ-II stellarator are analyzed using the transfer entropy, revealing the spatial dimensions and propagation properties of filamentary structures. The results are corroborated by performing simulations with a resistive MHD model and analyzing data from synthetic diagnostics. The transfer entropy captures the rotation of the filaments and allows the calculating of their rotation velocity. This deduced velocity was compared to the (known) poloidal velocity of the plasma and showed a relatively good agreement

    Initial sequencing and comparative analysis of the mouse genome

    No full text
    The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism
    corecore