The low frequency oscillatory relaxation of zonal potential perturbations is
studied numerically in the TJ-II stellarator (where it was experimentally
detected for the first time). It is studied in full global gyrokinetic
simulations of multi-species plasmas. The oscillation frequency obtained is
compared with predictions based on single-species simulations using simplified
analytical relations. It is shown that the frequency of this oscillation for a
multi-species plasma can be accurately obtained from single-species
calculations using extrapolation formulas. The damping of the oscillation and
the influence of the different inter-species collisions is studied in detail.
It is concluded that taking into account multiple kinetic ions and electrons
with impurity concentrations realistic for TJ-II plasmas allows to account for
the values of frequency and damping rate in zonal flows relaxations observed
experimentally.Comment: 11 figures, 22 page