332 research outputs found
Verbal labels selectively bias brain responses to high-energy foods.
The influence of external factors on food preferences and choices is poorly understood. Knowing which and how food-external cues impact the sensory processing and cognitive valuation of food would provide a strong benefit toward a more integrative understanding of food intake behavior and potential means of interfering with deviant eating patterns to avoid detrimental health consequences for individuals in the long run. We investigated whether written labels with positive and negative (as opposed to 'neutral') valence differentially modulate the spatio-temporal brain dynamics in response to the subsequent viewing of high- and low-energetic food images. Electrical neuroimaging analyses were applied to visual evoked potentials (VEPs) from 20 normal-weight participants. VEPs and source estimations in response to high- and low- energy foods were differentially affected by the valence of preceding word labels over the ~260-300 ms post-stimulus period. These effects were only observed when high-energy foods were preceded by labels with positive valence. Neural sources in occipital as well as posterior, frontal, insular and cingulate regions were down-regulated. These findings favor cognitive-affective influences especially on the visual responses to high-energetic food cues, potentially indicating decreases in cognitive control and goal-adaptive behavior. Inverse correlations between insular activity and effectiveness in food classification further indicate that this down-regulation directly impacts food-related behavior
Inhibition of c-Kit signaling is associated with reduced heat and cold pain sensitivity in humans
The tyrosine kinase receptor c-Kit is critically involved in the modulation of nociceptive sensitivity in mice. Ablation of the c-Kit gene results in hyposensitivity to thermal pain, while c-Kit activation produces hypersensitivity to the noxious heat, without altering sensitivity to innocuous mechanical stimuli. In this study we investigated the role of c-Kit signalling in human pain perception. We hypothesized that subjects treated with Imatinib or Nilotinib, potent inhibitors of tyrosine kinases including c-Kit, but also Abl1, PDFGFR{alpha}, and PDFGFR{beta}, that are used to treat chronic myeloid leukemia (CML), would experience changes in thermal pain sensitivity. We examined 31 asymptomatic CML patients (14 male, 17 female) under Imatinib/Nilotinib treatment and compared them to 39 age- and sex-matched healthy controls (12 male, 27 female). We used cutaneous heat and cold stimulation to test normal and noxious thermal sensitivity, and a grating orientation task to assess tactile acuity. Thermal pain thresholds were significantly increased in the Imatinib/Nilotinib-treated group, while innocuous thermal and tactile thresholds were unchanged compared to the control group. In conclusion, our findings suggest that the biological effects of c-Kit inhibition are comparable in mice and humans in that c-Kit activity is required to regulate thermal pain sensitivity, but does not affect innocuous thermal and mechanical sensation. The effect on experimental heat pain observed in our study is comparable to that of several common analgesics, thus modulation of the c-Kit pathway can be used to specifically modulate noxious heat and cold sensitivity in humans
Brain dynamics of meal size selection in humans.
Although neuroimaging research has evidenced specific responses to visual food stimuli based on their nutritional quality (e.g., energy density, fat content), brain processes underlying portion size selection remain largely unexplored. We identified spatio-temporal brain dynamics in response to meal images varying in portion size during a task of ideal portion selection for prospective lunch intake and expected satiety. Brain responses to meal portions judged by the participants as 'too small', 'ideal' and 'too big' were measured by means of electro-encephalographic (EEG) recordings in 21 normal-weight women. During an early stage of meal viewing (105-145ms), data showed an incremental increase of the head-surface global electric field strength (quantified via global field power; GFP) as portion judgments ranged from 'too small' to 'too big'. Estimations of neural source activity revealed that brain regions underlying this effect were located in the insula, middle frontal gyrus and middle temporal gyrus, and are similar to those reported in previous studies investigating responses to changes in food nutritional content. In contrast, during a later stage (230-270ms), GFP was maximal for the 'ideal' relative to the 'non-ideal' portion sizes. Greater neural source activity to 'ideal' vs. 'non-ideal' portion sizes was observed in the inferior parietal lobule, superior temporal gyrus and mid-posterior cingulate gyrus. Collectively, our results provide evidence that several brain regions involved in attention and adaptive behavior track 'ideal' meal portion sizes as early as 230ms during visual encounter. That is, responses do not show an increase paralleling the amount of food viewed (and, in extension, the amount of reward), but are shaped by regulatory mechanisms
Thyroid dysfunction caused by second-generation tyrosine kinase inhibitors in Philadelphia chromosome-positive chronic myeloid leukemia
BACKGROUND: Thyroid dysfunction is a well-known adverse effect of first-generation tyrosine kinase inhibitors (TKIs), like sunitinib. The aim of this study was to investigate the effect of second-generation TKIs on thyroid function. METHODS: We retrospectively assessed the effect of the first-generation TKI imatinib and the second-generation TKI nilotinib and dasatinib on thyroid function tests in 73 Philadelphia chromosome-positive (Ph-positive) chronic myeloid leukemia patients. RESULTS: Overall, 33 of 73 (45%) had one or more thyroid function test abnormalities during follow-up. Hypothyroidism or hyperthyroidism were found in 18 of 73 (25%) and 21 of 73 (29%) cases after a median of 6 and 22 weeks, respectively. In most patients (29 of 39, 74%) thyroid dysfunction was transient without clinical symptoms. Therapy of hypo-/hyperthyroidism was required in three patients. Thyroid dysfunction never resulted in the discontinuation of TKI therapy. Under treatment with imatinib, nilotinib, and dasatinib, thyroid abnormalities were detected in 25%, 55%, and 70%, respectively. Four of 55 patients (7%) treated with nilotinib had evidence for an autoimmune thyroiditis (antibody positive in 3 of 4 patients) with an episode of hyperthyroidism preceding hypothyroidism. CONCLUSIONS: Thyroid dysfunction is a common adverse event with second-generation TKI therapy in patients with Ph-positive chronic myeloid leukemia. Although the mechanism is still unclear, the high frequency of thyroid abnormalities, including autoimmune thyroiditis, warrants regular and long-term monitoring of thyroid function in these patients
GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics.
Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88- 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10(-13), r(2) = 8.9%, β = -0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with-but is statistically distinct from-the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10(-37), r(2) = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception
The Alternating Access Transport Mechanism in LacY
Lactose permease of Escherichia coli (LacY) is highly dynamic, and sugar binding causes closing of a large inward-facing cavity with opening of a wide outward-facing hydrophilic cavity. Therefore, lactose/H+ symport via LacY very likely involves a global conformational change that allows alternating access of single sugar- and H+-binding sites to either side of the membrane. Here, in honor of Stephan H. White’s seventieth birthday, we review in camera the various biochemical/biophysical approaches that provide experimental evidence for the alternating access mechanism
Moxetumomab pasudotox in heavily pre-treated patients with relapsed/refractory hairy cell leukemia (HCL): long-term follow-up from the pivotal trial
Background: Moxetumomab pasudotox is a recombinant CD22-targeting immunotoxin. Here, we present the long-term follow-up analysis of the pivotal, multicenter, open-label trial (NCT01829711) of moxetumomab pasudotox in patients with relapsed/refractory (R/R) hairy cell leukemia (HCL). Methods: Eligible patients had received ≥ 2 prior systemic therapies, including ≥ 2 purine nucleoside analogs (PNAs), or ≥ 1 PNA followed by rituximab or a BRAF inhibitor. Patients received 40 µg/kg moxetumomab pasudotox intravenously on Days 1, 3, and 5 of each 28-day cycle for up to six cycles. Disease response and minimal residual disease (MRD) status were determined by blinded independent central review. The primary endpoint was durable complete response (CR), defined as achieving CR with hematologic remission (HR, blood counts for CR) lasting > 180 days. Results: Eighty adult patients were treated with moxetumomab pasudotox and 63% completed six cycles. Patients had received a median of three lines of prior systemic therapy; 49% were PNA-refractory, and 38% were unfit for PNA retreatment. At a median follow-up of 24.6 months, the durable CR rate (CR with HR > 180 days) was 36% (29 patients; 95% confidence interval: 26–48%); CR with HR ≥ 360 days was 33%, and overall CR was 41%. Twenty-seven complete responders (82%) were MRD-negative (34% of all patients). CR lasting ≥ 60 months was 61%, and the median progression-free survival without the loss of HR was 71.7 months. Hemolytic uremic and capillary leak syndromes were each reported in ≤ 10% of patients, and ≤ 5% had grade 3–4 events; these events were generally reversible. No treatment-related deaths were reported. Conclusions: Moxetumomab pasudotox resulted in a high rate of durable responses and MRD negativity in heavily pre-treated patients with HCL, with a manageable safety profile. Thus, it represents a new and viable treatment option for patients with R/R HCL, who currently lack adequate therapy. Trial registration: ClinicalTrials.gov identifier: NCT01829711; first submitted: April 9, 2013. https://clinicaltrials.gov/ct2/show/NCT0182971
Moxetumomab pasudotox in heavily pre-treated patients with relapsed/refractory hairy cell leukemia (HCL): long-term follow-up from the pivotal trial
Background
Moxetumomab pasudotox is a recombinant CD22-targeting immunotoxin. Here, we present the long-term follow-up analysis of the pivotal, multicenter, open-label trial (NCT01829711) of moxetumomab pasudotox in patients with relapsed/refractory (R/R) hairy cell leukemia (HCL).
Methods
Eligible patients had received ≥ 2 prior systemic therapies, including ≥ 2 purine nucleoside analogs (PNAs), or ≥ 1 PNA followed by rituximab or a BRAF inhibitor. Patients received 40 µg/kg moxetumomab pasudotox intravenously on Days 1, 3, and 5 of each 28-day cycle for up to six cycles. Disease response and minimal residual disease (MRD) status were determined by blinded independent central review. The primary endpoint was durable complete response (CR), defined as achieving CR with hematologic remission (HR, blood counts for CR) lasting > 180 days.
Results
Eighty adult patients were treated with moxetumomab pasudotox and 63% completed six cycles. Patients had received a median of three lines of prior systemic therapy; 49% were PNA-refractory, and 38% were unfit for PNA retreatment. At a median follow-up of 24.6 months, the durable CR rate (CR with HR > 180 days) was 36% (29 patients; 95% confidence interval: 26–48%); CR with HR ≥ 360 days was 33%, and overall CR was 41%. Twenty-seven complete responders (82%) were MRD-negative (34% of all patients). CR lasting ≥ 60 months was 61%, and the median progression-free survival without the loss of HR was 71.7 months. Hemolytic uremic and capillary leak syndromes were each reported in ≤ 10% of patients, and ≤ 5% had grade 3–4 events; these events were generally reversible. No treatment-related deaths were reported.
Conclusions
Moxetumomab pasudotox resulted in a high rate of durable responses and MRD negativity in heavily pre-treated patients with HCL, with a manageable safety profile. Thus, it represents a new and viable treatment option for patients with R/R HCL, who currently lack adequate therapy.publishedVersio
Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome–positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance
Abstract
Nilotinib, an orally bioavailable, selective Bcr-Abl tyrosine kinase inhibitor, is 30-fold more potent than imatinib in pre-clinical models, and overcomes most imatinib resistant BCR-ABL mutations. In this phase 2 open-label study, 400 mg nilotinib was administered orally twice daily to 280 patients with Philadelphia chromosome–positive (Ph+) chronic myeloid leukemia in chronic phase (CML-CP) after imatinib failure or intolerance. Patients had at least 6 months of follow-up and were evaluated for hematologic and cytogenetic responses, as well as for safety and overall survival. At 6 months, the rate of major cytogenetic response (Ph ≤ 35%) was 48%: complete (Ph = 0%) in 31%, and partial (Ph = 1%-35%) in 16%. The estimated survival at 12 months was 95%. Nilotinib was effective in patients harboring BCR-ABL mutations associated with imatinib resistance (except T315I), and also in patients with a resistance mechanism independent of BCR-ABL mutations. Adverse events were mostly mild to moderate, and there was minimal cross-intolerance with imatinib. Grades 3 to 4 neutropenia and thrombocytopenia were observed in 29% of patients; pleural or pericardial effusions were observed in 1% (none were severe). In summary, nilotinib is highly active and safe in patients with CML-CP after imatinib failure or intolerance. This clinical trial is registered at http://clinicaltrials.gov as ID no. NCT00109707
Impact of age on efficacy and toxicity of nilotinib in patients with chronic myeloid leukemia in chronic phase : ENEST1st subanalysis
Purpose Achievement of deep molecular response with a tyrosine kinase inhibitor in patients with chronic myeloid leukemia (CML) is required to attempt discontinuation of therapy in these patients. The current subanalysis from the Evaluating Nilotinib Efficacy and Safety in Clinical Trials as First-Line Treatment (ENEST1st) study evaluated whether age has an impact on the achievement of deeper molecular responses or safety with frontline nilotinib in patients with CML. Methods ENEST1st is an open-label, multicenter, single-arm, prospective study of nilotinib 300 mg twice daily in patients with newly diagnosed CML in chronic phase. The patients were stratified into the following 4 groups based on age: young (18-39 years), middle age (40-59 years), elderly (60-74 years), and old (>= 75 years). The primary end point was the rate of molecular response 4 ([MR4] BCR-ABL1 Results Of the 1091 patients enrolled, 1089 were considered in the analysis, of whom, 23% (n = 243), 45% (n = 494), 27% (n = 300), and 5% (n = 52) were categorized as young, middle age, elderly, and old, respectively. At 18 months, the rates of MR4 were 33.9% (95% confidence interval [CI], 27.8-40.0%) in the young, 39.6% (95% CI, 35.3-44.0%) in the middle-aged, 40.5% (95% CI, 34.8-46.1%) in the elderly, and 35.4% (95% CI, 21.9-48.9%) in the old patients. Although the incidence of adverse events was slightly different, no new specific safety signals were observed across the 4 age groups. Conclusions This subanalysis of the ENEST1st study showed that age did not have a relevant impact on the deep molecular response rates associated with nilotinib therapy in newly diagnosed patients with CML and eventually on the eligibility of the patients to attempt treatment discontinuation.Peer reviewe
- …