5 research outputs found

    Crowd Behavior Understanding through SIOF Feature Analysis

    Get PDF
    Realizing the automated and online detection of crowd anomalies from surveillance CCTVs is a research-intensive and application-demanding task. This research proposes a novel technique for detecting crowd abnormalities through analyzing the spatial and temporal features of the input video signals. This integrated solution defines an image descriptor that reflects the global motion information over time. A non-linear SVM has then been adopted to classify dominant or large-scale crow d abnormal behaviors. The work reported has focused on: 1) online (or near real-time) detection of moving objects through a background subtraction model, namely ViBe; and to identify the saliency information as a spatial feature in addition to the optical flow of the motion foreground as the temporal feature; 2) to combine the extracted spatial and temporal features into a novel SIOF descriptor that encapsulates the global movement characteristic of a crowd; 3) the optimization of a nonlinear support vector machine (SVM) as classifier to detect suspicious crowd behaviors. The test and evaluation of the devised models and techniques have selected the BEHAVE database as the primary experimental data sets. Results against benchmarking models and systems have shown promising advancements in terms of the accuracy and efficiency for detecting crowd anomalies

    Artificial intelligence and robotics in high throughput post-genomics

    No full text
    The shift of post-genomics towards a systems approach has offered an ever-increasing role for artificial intelligence (AI) and robotics. Many disciplines (e.g. engineering, robotics, computer science) bear on the problem of automating the different stages involved in post-genomic research with a view to developing quality assured high-dimensional data. We review some of the latest contributions of AI and robotics to this end and note the limitations arising from the current independent, exploratory way in which specific solutions are being presented for specific problems without regard to how these could be eventually integrated into one comprehensible integrated intelligent syste

    An optimized graph-based structure for single-cell RNA-seq cell-type classification based on non-linear dimension reduction

    No full text
    Abstract Background It is now possible to analyze cellular heterogeneity at the single-cell level thanks to the rapid developments in single-cell sequencing technologies. The clustering of cells is a fundamental and common step in heterogeneity analysis. Even so, accurate cell clustering remains a challenge due to the high levels of noise, the high dimensions, and the high sparsity of data. Results Here, we present SCEA, a clustering approach for scRNA-seq data. Using two consecutive units, an encoder based on MLP and a graph attention auto-encoder, to obtain cell embedding and gene embedding, SCEA can simultaneously achieve cell low-dimensional representation and clustering performing various examinations to obtain the optimal value for each parameter, the presented result is in its most optimal form. To evaluate the performance of SCEA, we performed it on several real scRNA-seq datasets for clustering and visualization analysis. Conclusions The experimental results show that SCEA generally outperforms several popular single-cell analysis methods. As a result of using all available datasets, SCEA, in average, improves clustering accuracy by 4.4% in ARI Parameters over the well-known method scGAC. Also, the accuracy improvement of 11.65% is achieved by SCEA, compared to the Seurat model

    ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization

    No full text
    Vaccine research is a combinatorial science requiring computational analysis of vaccine components, formulations and optimization. We have developed a framework that combines computational tools for the study of immune function and vaccine development. This framework, named ImmunoGrid combines conceptual models of the immune system, models of antigen processing and presentation, system-level models of the immune system, Grid computing, and database technology to facilitate discovery, formulation and optimization of vaccines. ImmunoGrid modules share common conceptual models and ontologies. The ImmunoGrid portal offers access to educational simulators where previously defined cases can be displayed, and to research simulators that allow the development of new, or tuning of existing, computational models. The portal is accessible at igrid-ext.cryst.bbk.ac.uk/immunogrid
    corecore