330 research outputs found

    Macroscopic effects in attosecond pulse generation

    Full text link
    We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significantly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of self-compressed attosecond pulses. We show this effect experimentally, using long argon-filled gas cells as generating medium.Comment: 5 pages 4 figure

    Dark matter haloes in modified gravity and dark energy: interaction rate, small-, and large-scale alignment

    Full text link
    We study the properties of dark matter haloes in a wide range of modified gravity models, namely, f(R)f(R), DGP, and interacting dark energy models. We study the effects of modified gravity and dark energy on the internal properties of haloes, such as the spin and the structural parameters. We find that f(R)f(R) gravity enhance the median value of the Bullock spin parameter, but could not detect such effects for DGP and coupled dark energy. f(R)f(R) also yields a lower median sphericity and oblateness, while coupled dark energy has the opposite effect. However, these effects are very small. We then study the interaction rate of haloes in different gravity, and find that only strongly coupled dark energy models enhance the interaction rate. We then quantify the enhancement of the alignment of the spins of interacting halo pairs by modified gravity. Finally, we study the alignment of the major axes of haloes with the large-scale structures. The alignment of the spins of interacting pairs of haloes in DGP and coupled dark energy models show no discrepancy with GR, while f(R)f(R) shows a weaker alignment. Strongly coupled dark energy shows a stronger alignment of the halo shape with the large-scale structures.Comment: 11 pages, 6 figures, MNRAS Accepte

    Theory of attosecond delays in laser-assisted photoionization

    Full text link
    We study the temporal aspects of laser-assisted extreme ultraviolet (XUV) photoionization using attosecond pulses of harmonic radiation. The aim of this paper is to establish the general form of the phase of the relevant transition amplitudes and to make the connection with the time-delays that have been recently measured in experiments. We find that the overall phase contains two distinct types of contributions: one is expressed in terms of the phase-shifts of the photoelectron continuum wavefunction while the other is linked to continuum--continuum transitions induced by the infrared (IR) laser probe. Our formalism applies to both kinds of measurements reported so far, namely the ones using attosecond pulse trains of XUV harmonics and the others based on the use of isolated attosecond pulses (streaking). The connection between the phases and the time-delays is established with the help of finite difference approximations to the energy derivatives of the phases. This makes clear that the observed time-delays is a sum of two components: a one-photon Wigner-like delay and an universal delay that originates from the probing process itself.Comment: 15 pages, 10 figures, special issue 'Attosecond spectroscopy' Chem. Phy

    High-order Harmonic Generation and Dynamic Localization in a driven two-level system, a non-perturbative solution using the Floquet-Green formalism

    Full text link
    We apply the Floquet-Green operator formalism to the case of a harmonically-driven two-level system. We derive exact expressions for the quasi-energies and the components of the Floquet eigenstates with the use of continued fractions. We study the avoided crossings structure of the quasi-energies as a function of the strength of the driving field and give an interpretation in terms of resonant multi-photon processes. From the Floquet eigenstates we obtain the time-evolution operator. Using this operator we study Dynamic Localization and High-order Harmonic Generation in the non-perturbative regime

    Quantum-path analysis and phase matching of high-order harmonic generation and high-order frequency mixing processes in strong laser fields

    Get PDF
    We study phase-matching conditions for high-order harmonic generation as well as high-order sum- and difference-frequency mixing processes in strong laser fields, using a graphical approach described in Balcou et al (1997 Phys. Rev. A 55 3204-10). This method is based on the analysis of the different quantum paths that contribute, with different phase properties, to the single-atom response. We propose a simple numerical method to disentangle the quantum paths contributing to the generation process. We present graphical maps of the phase matching around the laser focus, which allow one to predict the geometries that optimize the conversion efficiency of the process considered. The method is applied to the study of sum- and difference-frequency mixing processes. The qualitative predictions of the graphical phase-matching approach are confirmed by numerical propagation calculations

    Phase Measurement of Resonant Two-Photon Ionization in Helium

    Get PDF
    We study resonant two-color two-photon ionization of Helium via the 1s3p 1P1 state. The first color is the 15th harmonic of a tunable titanium sapphire laser, while the second color is the fundamental laser radiation. Our method uses phase-locked high-order harmonics to determine the {\it phase} of the two-photon process by interferometry. The measurement of the two-photon ionization phase variation as a function of detuning from the resonance and intensity of the dressing field allows us to determine the intensity dependence of the transition energy.Comment: 4 pages, 5 figures, under consideratio
    corecore