263 research outputs found

    Dystrophin conferral using human endothelium expressing HLA-E in the non-immunosuppressive murine model of Duchenne muscular dystrophy

    Get PDF
    Human leukocyte antigen (HLA)-E is a non-classical major histocompatibility complex class I (Ib) molecule, which plays an important role in immunosuppression. In this study, we investigated the immunomodulating effect of HLA-E in a xenogeneic system, using human placental artery-derived endothelial (hPAE) cells expressing HLA-E in a mouse model. In vitro cell lysis analysis by primed lymphocytes in combination with siRNA transfection showed that HLA-E is necessary for inhibition of the immune response. Similarly, in vivo cell implantation analysis with siRNA-mediated down-regulation of HLA-E demonstrates that HLA-E is involved in immunosuppression. As hPAE cells efficiently transdifferentiate into myoblasts/myocytes in vitro, we transplanted the cells into mdx mice, a model of Duchenne muscular dystrophy. hPAE cells conferred dystrophin to myocytes of the ‘immunocompetent' mdx mice with extremely high efficiency. These findings suggest that HLA-E-expressing cells with a myogenic potential represent a promising source for cell-based therapy of patients with muscular dystrophy

    Long-Lasting Inhibitory Effects of Fetal Liver Mesenchymal Stem Cells on T-Lymphocyte Proliferation

    Get PDF
    Human bone marrow mesenchymal stem cells (BM-MSC) are multipotent progenitor cells that have transient immunomodulatory properties on Natural Killer (NK) cells, Dendritic Cells (DC), and T cells. This study compared the use of MSC isolated from bone marrow and fetal liver (FL-MSC) to determine which displayed the most efficient immunosuppressive effects on T cell activation. Although both types of MSC exhibit similar phenotype profile, FL-MSC displays a much more extended in vitro life-span and immunomodulatory properties. When co-cultured with CD3/CD28-stimulated T cells, both BM-MSC and FL-MSC affected T cell proliferation by inhibiting their entry into the cell cycle, by inducing the down-regulation of phospho-retinoblastoma (pRb), cyclins A and D1, as well as up-regulating p27kip1expression. The T cell inhibition by MSC was not due to the soluble HLA-G5 isoform, but to the surface expression of HLA-G1, as shown by the need of cell-cell contact and by the use of neutralizing anti-HLA-G antibodies. To note, in a HLA-G-mediated fashion, MSC facilitated the expansion of a CD4low/CD8low T subset that had decreased secretion of IFN-γ, and an induced secretion of the immunomodulatory cytokine IL-10. Because of their longer lasting in vitro immunosuppressive properties, mainly mediated by HLA-G, and their more efficient induction of IL-10 production and T cell apoptosis, fetal liver MSC could be considered a new tool for MSC therapy to prevent allograft rejection

    Human first-trimester chorionic villi have a myogenic potential

    Get PDF
    First-trimester chorionic-villi-derived cells (FTCVs) are the earliest fetal material that can be obtained for prenatal diagnosis of fetal disorders such as Duchenne muscular dystrophy (DMD). DMD is a devastating X-linked disorder characterized by the absence of dystrophin at the sarcolemma of muscle fibers. Currently, a limited number of treatment options are available for DMD, although cell therapy is a promising treatment strategy for muscle degeneration in DMD patients. A novel candidate source of cells for this approach is FTCVs taken between the 9th and 11th weeks of gestation. FTCVs might have a higher undifferentiated potential than any other tissue-derived cells because they are the earliest fetal material. We examined the expression of mesenchymal stem cell and pluripotent stem cell markers in FTCVs, in addition to their myogenic potential. FTCVs expressed mesenchymal stem cell markers and Nanog and Sox2 transcription factors as pluripotent stem cell markers. These cells efficiently differentiated into myotubes after myogenic induction, at which point Nanog and Sox2 were down-regulated, whereas MyoD, myogenin, desmin and dystrophin were up-regulated. To our knowledge, this is the first demonstration that FTCVs can be efficiently directed to differentiate in vitro into skeletal muscle cells that express dystrophin as the last stage marker of myogenic differentiation. The myogenic potential of FTCVs reveals their promise for use in cell therapy for DMD, for which no effective treatment presently exists

    Co-transplantation of Human Mesenchymal Stem Cells Promotes Human CD34+ Cells Engraftment in a Dose-dependent Fashion in NOD/SCID Mice

    Get PDF
    Mesenchymal stem cells (MSCs) have recently been identified and characterized in humans. Moreover, MSC secrete cytokines that can support hematopoietic progenitor growth. In the present study, we evaluated whether the efficacy of hematopoietic stem cell transplantation is improved by their co-transplantation with MSC, and whether this is positively correlated with the dose of infused MSCs. Accordingly, irradiated NOD/SCID mice were transplanted with 1×105 human CD34+ cells in the presence or absence of culture expanded MSCs (1×106 or 5×106). We evaluated human hematopoietic cell engraftment by flow cytometry and assessed MSC tissue distributions by fluorescence in situ hybridization. We found that CD45+ and CD34+ cell levels were significantly elevated in a dose-dependent manner in cotransplanted mice 4 weeks after transplantation. The engraftments of CD33+ and CD19+ cells also increased dose-dependently. However, the engraftment of CD3+ cells did not increase after co-transplantation with MSCs. Human Y chromosome+ cells were observed in multiple tissues and were more frequently observed in mice co-transplanted with 5×106 rather than 1×106 MSCs. These results suggest that MSCs are capable of enhancing hematopoietic cell engraftment and distribution in multiple organs in a dose-dependent fashion

    Malnutrition as assessed by nutritional risk index is associated with worse outcome in patients admitted with acute decompensated heart failure: an ACAP-HF data analysis

    Get PDF
    Malnutrition is common at hospital admission and tends to worsen during hospitalization. This controlled population study aimed to determine if serum albumin or moderate and severe nutritional depletion by Nutritional Risk Index (NRI) at hospital admission are associated with increased length of hospital stay (LOS) in patients admitted with acute decompensated heart failure (ADHF). Serum albumin levels and lymphocyte counts were retrospectively determined at hospital admission in 1740 consecutive patients admitted with primary and secondary diagnosis of ADHF. The Nutrition Risk Score (NRI) developed originally in AIDS and cancer populations was derived from the serum albumin concentration and the ratio of actual to usual weight, as follows: NRI = (1.519 × serum albumin, g/dL) + {41.7 × present weight (kg)/ideal body weight(kg)}. Patients were classified into four groups as no, mild, moderate or severe risk by NRI. Multiple logistic regressions were used to determine the association between nutritional risk category and LOS

    Human Embryonic and Fetal Mesenchymal Stem Cells Differentiate toward Three Different Cardiac Lineages in Contrast to Their Adult Counterparts

    Get PDF
    Mesenchymal stem cells (MSCs) show unexplained differences in differentiation potential. In this study, differentiation of human (h) MSCs derived from embryonic, fetal and adult sources toward cardiomyocytes, endothelial and smooth muscle cells was investigated. Labeled hMSCs derived from embryonic stem cells (hESC-MSCs), fetal umbilical cord, bone marrow, amniotic membrane and adult bone marrow and adipose tissue were co-cultured with neonatal rat cardiomyocytes (nrCMCs) or cardiac fibroblasts (nrCFBs) for 10 days, and also cultured under angiogenic conditions. Cardiomyogenesis was assessed by human-specific immunocytological analysis, whole-cell current-clamp recordings, human-specific qRT-PCR and optical mapping. After co-culture with nrCMCs, significantly more hESC-MSCs than fetal hMSCs stained positive for α-actinin, whereas adult hMSCs stained negative. Furthermore, functional cardiomyogenic differentiation, based on action potential recordings, was shown to occur, but not in adult hMSCs. Of all sources, hESC-MSCs expressed most cardiac-specific genes. hESC-MSCs and fetal hMSCs contained significantly higher basal levels of connexin43 than adult hMSCs and co-culture with nrCMCs increased expression. After co-culture with nrCFBs, hESC-MSCs and fetal hMSCs did not express α-actinin and connexin43 expression was decreased. Conduction velocity (CV) in co-cultures of nrCMCs and hESC-MSCs was significantly higher than in co-cultures with fetal or adult hMSCs. In angiogenesis bioassays, only hESC-MSCs and fetal hMSCs were able to form capillary-like structures, which stained for smooth muscle and endothelial cell markers.Human embryonic and fetal MSCs differentiate toward three different cardiac lineages, in contrast to adult MSCs. Cardiomyogenesis is determined by stimuli from the cellular microenvironment, where connexin43 may play an important role

    mTORC1 is essential for early steps during Schwann cell differentiation of amniotic fluid stem cells and regulates lipogenic gene expression.

    Get PDF
    Schwann cell development is hallmarked by the induction of a lipogenic profile. Here we used amniotic fluid stem (AFS) cells and focused on the mechanisms occurring during early steps of differentiation along the Schwann cell lineage. Therefore, we initiated Schwann cell differentiation in AFS cells and monitored as well as modulated the activity of the mechanistic target of rapamycin (mTOR) pathway, the major regulator of anabolic processes. Our results show that mTOR complex 1 (mTORC1) activity is essential for glial marker expression and expression of Sterol Regulatory Element-Binding Protein (SREBP) target genes. Moreover, SREBP target gene activation by statin treatment promoted lipogenic gene expression, induced mTORC1 activation and stimulated Schwann cell differentiation. To investigate mTORC1 downstream signaling we expressed a mutant S6K1, which subsequently induced the expression of the Schwann cell marker S100b, but did not affect lipogenic gene expression. This suggests that S6K1 dependent and independent pathways downstream of mTORC1 drive AFS cells to early Schwann cell differentiation and lipogenic gene expression. In conclusion our results propose that future strategies for peripheral nervous system regeneration will depend on ways to efficiently induce the mTORC1 pathway
    corecore