29 research outputs found

    Statistical and functional convergence of common and rare genetic influences on autism at chromosome 16p

    Get PDF
    Publisher Copyright: © 2022, The Author(s).The canonical paradigm for converting genetic association to mechanism involves iteratively mapping individual associations to the proximal genes through which they act. In contrast, in the present study we demonstrate the feasibility of extracting biological insights from a very large region of the genome and leverage this strategy to study the genetic influences on autism. Using a new statistical approach, we identified the 33-Mb p-arm of chromosome 16 (16p) as harboring the greatest excess of autism’s common polygenic influences. The region also includes the mechanistically cryptic and autism-associated 16p11.2 copy number variant. Analysis of RNA-sequencing data revealed that both the common polygenic influences within 16p and the 16p11.2 deletion were associated with decreased average gene expression across 16p. The transcriptional effects of the rare deletion and diffuse common variation were correlated at the level of individual genes and analysis of Hi-C data revealed patterns of chromatin contact that may explain this transcriptional convergence. These results reflect a new approach for extracting biological insight from genetic association data and suggest convergence of common and rare genetic influences on autism at 16p.Peer reviewe

    Quantifying the Impact of Rare and Ultra-rare Coding Variation across the Phenotypic Spectrum

    Get PDF
    There is a limited understanding about the impact of rare protein-truncating variants across multiple phenotypes. We explore the impact of this class of variants on 13 quantitative traits and 10 diseases using whole-exome sequencing data from 100,296 individuals. Protein-truncating variants in genes intolerant to this class of mutations increased risk of autism, schizophrenia, bipolar disorder, intellectual disability, and ADHD. In individuals without these disorders, there was an association with shorter height, lower education, increased hospitalization, and reduced age at enrollment. Gene sets implicated from GWASs did not show a significant protein-truncating variants burden beyond what was captured by established Mendelian genes. In conclusion, we provide a thorough investigation of the impact of rare deleterious coding variants on complex traits, suggesting widespread pleiotropic risk.Peer reviewe

    Genetic analyses identify widespread sex-differential participation bias

    Get PDF
    Genetic analyses identify widespread sex-differential participation bias in population-based studies and show how this bias can lead to incorrect inferences. These findings highlight new challenges for association studies as sample sizes continue to grow. Genetic association results are often interpreted with the assumption that study participation does not affect downstream analyses. Understanding the genetic basis of participation bias is challenging since it requires the genotypes of unseen individuals. Here we demonstrate that it is possible to estimate comparative biases by performing a genome-wide association study contrasting one subgroup versus another. For example, we showed that sex exhibits artifactual autosomal heritability in the presence of sex-differential participation bias. By performing a genome-wide association study of sex in approximately 3.3 million males and females, we identified over 158 autosomal loci spuriously associated with sex and highlighted complex traits underpinning differences in study participation between the sexes. For example, the body mass index-increasing allele at FTO was observed at higher frequency in males compared to females (odds ratio = 1.02, P = 4.4 x 10(-)(36)). Finally, we demonstrated how these biases can potentially lead to incorrect inferences in downstream analyses and propose a conceptual framework for addressing such biases. Our findings highlight a new challenge that genetic studies may face as sample sizes continue to grow.Peer reviewe

    Comprehensive genome-wide association study of different forms of hernia identifies more than 80 associated loci

    Get PDF
    Hernias are characterized by protrusion of an organ or tissue through its surrounding cavity and often require surgical repair. In this study we identify 65,492 cases for five hernia types in the UK Biobank and perform genome-wide association study scans for these five types and two combined groups. Our results show associated variants in all scans. Inguinal hernia has the most associations and we conduct a follow-up study with 23,803 additional cases from four study groups giving 84 independently associated variants. Identified variants from all scans are collapsed into 81 independent loci. Further testing shows that 26 loci are associated with more than one hernia type, suggesting substantial overlap between the underlying genetic mechanisms. Pathway analyses identify several genes with a strong link to collagen and/or elastin (ADAMTS6, ADAMTS16, ADAMTSL3, LOX, ELN) in the vicinity of associated loci for inguinal hernia, which substantiates an essential role of connective tissue morphology. Hernias involve protrusion of an organ or tissue through its surrounding cavity. Here the authors carry out GWAS for five types of hernia and find 81 variants, most of which are associated with inguinal hernia; downstream analysis suggests an important role for connective tissue morphology.Peer reviewe

    A Genetic Investigation of Sex Bias in the Prevalence of Attention-Deficit/Hyperactivity Disorder

    Get PDF
    Background Attention-deficit/hyperactivity disorder (ADHD) shows substantial heritability and is two to seven times more common in male individuals than in female individuals. We examined two putative genetic mechanisms underlying this sex bias: sex-specific heterogeneity and higher burden of risk in female cases. Methods We analyzed genome-wide autosomal common variants from the Psychiatric Genomics Consortium and iPSYCH Project (n = 20,183 cases, n = 35,191 controls) and Swedish population register data (n = 77,905 cases, n = 1,874,637 population controls). Results Genetic correlation analyses using two methods suggested near complete sharing of common variant effects across sexes, with rg estimates close to 1. Analyses of population data, however, indicated that female individuals with ADHD may be at especially high risk for certain comorbid developmental conditions (i.e., autism spectrum disorder and congenital malformations), potentially indicating some clinical and etiological heterogeneity. Polygenic risk score analysis did not support a higher burden of ADHD common risk variants in female cases (odds ratio [confidence interval] = 1.02 [0.98–1.06], p = .28). In contrast, epidemiological sibling analyses revealed that the siblings of female individuals with ADHD are at higher familial risk for ADHD than the siblings of affected male individuals (odds ratio [confidence interval] = 1.14 [1.11–1.18], p = 1.5E-15). Conclusions Overall, this study supports a greater familial burden of risk in female individuals with ADHD and some clinical and etiological heterogeneity, based on epidemiological analyses. However, molecular genetic analyses suggest that autosomal common variants largely do not explain the sex bias in ADHD prevalence

    Genetic Influences on Eight Psychiatric Disorders Based on Family Data of 4 408 646 Full and Half-siblings, and Genetic Data of 333 748 Cases and Controls

    Get PDF
    Background. Most studies underline the contribution of heritable factors for psychiatric disorders. However, heritability estimates depend on the population under study, diagnostic instruments, and study designs that each has its inherent assumptions, strengths, and biases. We aim to test the homogeneity in heritability estimates between two powerful, and state of the art study designs for eight psychiatric disorders. Methods. We assessed heritability based on data of Swedish siblings (N = 4 408 646 full and maternal half-siblings), and based on summary data of eight samples with measured genotypes (N = 125 533 cases and 208 215 controls). All data were based on standard diagnostic criteria. Eight psychiatric disorders were studied: (1) alcohol dependence (AD), (2) anorexia nervosa, (3) attention deficit/hyperactivity disorder (ADHD), (4) autism spectrum disorder, (5) bipolar disorder, (6) major depressive disorder, (7) obsessive-compulsive disorder (OCD), and (8) schizophrenia. Results. Heritability estimates from sibling data varied from 0.30 for Major Depression to 0.80 for ADHD. The estimates based on the measured genotypes were lower, ranging from 0.10 for AD to 0.28 for OCD, but were significant, and correlated positively (0.19) with national sibling-based estimates. When removing OCD from the data the correlation increased to 0.50. Conclusions. Given the unique character of each study design, the convergent findings for these eight psychiatric conditions suggest that heritability estimates are robust across different methods. The findings also highlight large differences in genetic and environmental influences between psychiatric disorders, providing future directions for etiological psychiatric research

    Identifying genetic differences between bipolar disorder and major depression through multiple GWAS.

    Get PDF
    Background; Accurate diagnosis of bipolar disorder (BD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A key reason is that the first manic episode is often preceded by a depressive one, making it difficult to distinguish BD from unipolar major depressive disorder (MDD). Aims; Here, we use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores that may aid early differential diagnosis. Methods; Based on individual genotypes from case-control cohorts of BD and MDD shared through the Psychiatric Genomics Consortium, we compile case-case-control cohorts, applying a careful merging and quality control procedure. In a resulting cohort of 51,149 individuals (15,532 BD cases, 12,920 MDD cases and 22,697 controls), we perform a variety of GWAS and polygenic risk scores (PRS) analyses. Results; While our GWAS is not well-powered to identify genome-wide significant loci, we find significant SNP-heritability and demonstrate the ability of the resulting PRS to distinguish BD from MDD, including BD cases with depressive onset. We replicate our PRS findings, but not signals of individual loci in an independent Danish cohort (iPSYCH 2015 case-cohort study, N=25,966). We observe strong genetic correlation between our case-case GWAS and that of case-control BD. Conclusions; We find that MDD and BD, including BD with a depressive onset, are genetically distinct. Further, our findings support the hypothesis that Controls – MDD — BD primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BD and, importantly, BD with depressive onset from MDD
    corecore