1,347 research outputs found

    Improved diamond coring bits developed for dry and chip-flush drilling

    Get PDF
    Two rotary diamond bit designs, one operating with a chip-flushing fluid, the second including auger section to remove drilled chips, enhance usefulness of tool for exploratory and industrial core-drilling of hard, abrasive mineral deposits and structural masonry

    Measuring cellular traction forces on non-planar substrates

    Full text link
    Animal cells use traction forces to sense the mechanics and geometry of their environment. Measuring these traction forces requires a workflow combining cell experiments, image processing and force reconstruction based on elasticity theory. Such procedures have been established before mainly for planar substrates, in which case one can use the Green's function formalism. Here we introduce a worksflow to measure traction forces of cardiac myofibroblasts on non-planar elastic substrates. Soft elastic substrates with a wave-like topology were micromolded from polydimethylsiloxane (PDMS) and fluorescent marker beads were distributed homogeneously in the substrate. Using feature vector based tracking of these marker beads, we first constructed a hexahedral mesh for the substrate. We then solved the direct elastic boundary volume problem on this mesh using the finite element method (FEM). Using data simulations, we show that the traction forces can be reconstructed from the substrate deformations by solving the corresponding inverse problem with a L1-norm for the residue and a L2-norm for 0th order Tikhonov regularization. Applying this procedure to the experimental data, we find that cardiac myofibroblast cells tend to align both their shapes and their forces with the long axis of the deformable wavy substrate.Comment: 34 pages, 9 figure

    Contacting single bundles of carbon nanotubes with alternating electric fields

    Full text link
    Single bundles of carbon nanotubes have been selectively deposited from suspensions onto sub-micron electrodes with alternating electric fields. We explore the resulting contacts using several solvents and delineate the differences between Au and Ag as electrode materials. Alignment of the bundles between electrodes occurs at frequencies above 1 kHz. Control over the number of trapped bundles is achieved by choosing an electrode material which interacts strongly with the chemical functional groups of the carbon nanotubes, with superior contacts being formed with Ag electrodes.Comment: 4 pages, RevTe

    Mutual Zonated Interactions of Wnt and Hh Signaling Are Orchestrating the Metabolism of the Adult Liver in Mice and Human

    No full text
    The Hedgehog (Hh) and Wnt/β-Catenin (Wnt) cascades are morphogen pathways whose pronounced influence on adult liver metabolism has been identified in recent years. How both pathways communicate and control liver metabolic functions are largely unknown. Detecting core components of Wnt and Hh signaling and mathematical modeling showed that both pathways in healthy liver act largely complementary to each other in the pericentral (Wnt) and the periportal zone (Hh) and communicate mainly by mutual repression. The Wnt/Hh module inversely controls the spatiotemporal operation of various liver metabolic pathways, as revealed by transcriptome, proteome, and metabolome analyses. Shifting the balance to Wnt (activation) or Hh (inhibition) causes pericentralization and periportalization of liver functions, respectively. Thus, homeostasis of the Wnt/Hh module is essential for maintaining proper liver metabolism and to avoid the development of certain metabolic diseases. With caution due to minor species-specific differences, these conclusions may hold for human liver as well

    Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first principles calculations for copper

    Full text link
    First principles calculations of the Sigma 5 (310)[001] symmetric tilt grain boundary in Cu with Bi, Na, and Ag substitutional impurities provide evidence that in the phenomenon of Bi embrittlement of Cu grain boundaries electronic effects do not play a major role; on the contrary, the embrittlement is mostly a structural or "size" effect. Na is predicted to be nearly as good an embrittler as Bi, whereas Ag does not embrittle the boundary in agreement with experiment. While we reject the prevailing view that "electronic" effects (i.e., charge transfer) are responsible for embrittlement, we do not exclude the role of chemistry. However numerical results show a striking equivalence between the alkali metal Na and the semi metal Bi, small differences being accounted for by their contrasting "size" and "softness" (defined here). In order to separate structural and chemical effects unambiguously if not uniquely, we model the embrittlement process by taking the system of grain boundary and free surfaces through a sequence of precisely defined gedanken processes; each of these representing a putative mechanism. We thereby identify three mechanisms of embrittlement by substitutional impurities, two of which survive in the case of embrittlement or cohesion enhancement by interstitials. Two of the three are purely structural and the third contains both structural and chemical elements that by their very nature cannot be further unravelled. We are able to take the systems we study through each of these stages by explicit computer simulations and assess the contribution of each to the nett reduction in intergranular cohesion. The conclusion we reach is that embrittlement by both Bi and Na is almost exclusively structural in origin; that is, the embrittlement is a size effect.Comment: 13 pages, 5 figures; Accepted in Phys. Rev.

    Emerging climate-driven disturbance processes: Widespread mortality associated with snow-to-rain transitions across 10° of latitude and half the range of a climate-threatened conifer

    Get PDF
    Climate change is causing rapid changes to forest disturbance regimes worldwide. While the consequences of climate change for existing disturbance processes, like fires, are relatively well studied, emerging drivers of disturbance such as snow loss and subsequent mortality are much less documented. As the climate warms, a transition from winter snow to rain in high latitudes will cause significant changes in environmental conditions such as soil temperatures, historically buffered by snow cover. The Pacific coast of North America is an excellent test case, as mean winter temperatures are currently at the snow–rain threshold and have been warming for approximately 100 years post-Little Ice Age. Increased mortality in a widespread tree species in the region has been linked to warmer winters and snow loss. Here, we present the first high-resolution range map of this climate-sensitive species, Callitropsis nootkatensis (yellow-cedar), and document the magnitude and location of observed mortality across Canada and the United States. Snow cover loss related mortality spans approximately 10° latitude (half the native range of the species) and 7% of the overall species range and appears linked to this snow–rain transition across its range. Mortality is commonly >70% of basal area in affected areas, and more common where mean winter temperatures is at or above the snow–rain threshold (>0 °C mean winter temperature). Approximately 50% of areas with a currently suitable climate for the species (< 2 °C) are expected to warm beyond that threshold by the late 21st century. Regardless of climate change scenario, little of the range which is expected to remain suitable in the future (e.g., a climatic refugia) is in currently protected landscapes (<1–9%). These results are the first documentation of this type of emerging climate disturbance and highlight the difficulties of anticipating novel disturbance processes when planning for conservation and management.Ye

    Aminoethyl substitution enhances the self-assembly properties of an aminocellulose as a potential archaeological wood consolidant

    Get PDF
    The 6-deoxy-6-aminocelluloses—or “aminocelluloses”—are a class of synthetic natural cellulose derivatives which are mostly aqueous soluble and have excellent film-forming properties. Recent studies have connected these properties at the molecular level with protein-like self-associative behaviour for a range of aminocelluloses including a 6-deoxy-6-(ω-aminoethyl) aminocellulose AEA-1 with the association being a two-stage process—a reversible oligomerisation followed by further (semi-reversible) aggregation into larger structures. Here, we synthesise and compare a new 6-deoxy-6-(ω-aminoethyl) aminocellulose AEA-1′ with different degree of substitution with one with further alkyl derivatisation, namely 6-deoxy-6-(ω-hydroxyethyl) aminocellulose HEA-1′. As with AEA-1, sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge still show a two-stage process for both AEA-1′ and HEA-1′, with the latter giving higher molar masses. The consequences of these properties for use as consolidants for archaeological wood are considered

    Raman spectra and calculated vibrational frequencies of size-selected C16, C18, and C20 clusters

    Get PDF
    The surface plasmon polariton-enhanced Raman spectra of size-selected C16, C18, and C20 clusters isolated in nitrogen matrices are presented along with the calculated vibrational frequencies for the ring and linear chain isomers. The Raman spectra, recorded at a range of excitation wavelengths from 457.9 to 670 nm, show strong resonance enhancement for the three clusters. The calculated vibrational frequencies for ring and linear chain isomers and the cage and bowl structures for C20 are compared to the experimental frequencies. Systematic shifts in the series of peaks in the 200 cm-1 region for C16, C18, and C20 suggest that the observed isomers have the same geometry, thereby ruling out the bowl and cage isomers for C20. The measured spectra appear to be most consistent with the linear chain isomer. This high-energy isomer may be produced during neutralization of the deposited cluster ions

    ABC Effect in Basic Double-Pionic Fusion --- Observation of a new resonance?

    Get PDF
    We report on a high-statistics measurement of the basic double pionic fusion reaction pn→dπ0π0pn \to d\pi^0\pi^0 over the energy region of the so-called ABC effect, a pronounced low-mass enhancement in the ππ\pi\pi-invariant mass spectrum. The measurements were performed with the WASA detector setup at COSY. The data reveal the ABC effect to be associated with a Lorentzian shaped energy dependence in the integral cross section. The observables are consistent with a resonance with I(JP)=0(3+)I(J^P) =0(3^+) in both pnpn and ΔΔ\Delta\Delta systems. Necessary further tests of the resonance interpretation are discussed
    • …
    corecore