14,592 research outputs found
Subband filling and Mott transition in Ca_{2-x}Sr_xRuO_4
A new concept is proposed for the paramagnetic metal insulator transition in
the layer perovskite Ca_{2-x}Sr_xRuO_4. Whereas the pure Sr compound is
metallic up to very large Coulomb energies due to strong orbital fluctuations,
structural changes induced by doping with Ca give rise to a interorbital charge
transfer which makes the material extremely sensitive to local correlations.
Using dynamical mean field theory based on finite temperature multi-band exact
diagonalization it is shown that the combination of crystal field splitting and
onsite Coulomb interactions leads to complete filling of the d_xy band and to a
Mott transition in the half-filled d_xz,yz bands.Comment: 4 pages, 3 figure
An Analysis of \pi\pi-Scattering Phase Shift and Existence of \sigma(555) particle
In most of the Nambu:Jona-Lasinio(NJL)-type models, realizing the hidden
chiral symmetry, the existence of a scalar particle \sigma is needed with a
mass m_\sigma=2 m_q, as a partner of the Nambu-Goldstone boson \pi. However,
the results of many analyses on \pi\pi phase-shift thus far made have been
negative for its existence. In this paper we re-analyze the phase-shift,
applying a new method, the interfering amplitude method, which treats the
T-matrix directly and describes multi-resonances in conformity with the
unitarity. As a result, the existence of \sigma has been strongly suggested
from the behavior of the \pi\pi-->\pi\pi phase shift between the \pi\pi- and
the KK- thresholds, with mass = 553.3 +- 0.5_{st} MeV and width= 242.6 +-
1.2_{st} MeV. The most crucial point in our analysis is the introduction of a
negative background phase, possibly reflecting a ``repulsive core" in \pi\pi
interactions. The properties of f_0(980) are also investigated from data
including those over the KK threshold. Its mass is obtained as 993.2 +-
6.5_{st} +- 6.9_{sys} MeV. Its width is about a hundred MeV, although this
depends largely on the treatment of the elasticity and the \pi\pi-->KK phase
shift, both of which may have large experimental uncertainties.Comment: 22 pages, Latex with Prog. Theor. Phys. format PTPTEX.sty, 4 EPS
figure
pi^0 pi^0 Scattering Amplitudes and Phase Shifts Obtained by the pi^- P Charge Exchange Process
The results of the analysis of the pi^0 pi^0 scattering amplitudes obtained
with pi^- P charge exchange reaction, pi^- P --> pi^0 pi^0 n, data at 9 GeV/c
are presented. The pi^0 pi^0 scattering amplitudes show clear f_0(1370) and
f_2(1270) signals in the S and D waves, respectively. The pi^0 pi^0 scattering
phase shifts have been obtained below Kbar K threshold and been analyzed by the
Interfering Amplitude method with introduction of negative background phases.
The results show a S wave resonance, sigma. Its Breit-Wigner parameters are in
good agreement with those of our previous analysis on the pi^+ pi^- phase shift
data.Comment: 4 pages, 4 figures. Proceedings of the int. conf. Hadron'99 at
Beijing, Aug. 1999. Presented for the collaboration of A.M.Ma, K.Takamatsu,
M.Y.Ishida, S.Ishida, T.Ishida, T. Tsuru and H. Shimizu, and the E135
collaboration. For our activities on sigma, visit
http://amaterasu.kek.jp/sigm
Mass Uncertainties of f0(600) and f0(1370) and their Effects on Determination of the Quark and Glueball Admixtures of the I=0 Scalar Mesons
Within a nonlinear chiral Lagrangian framework the correlations between the
quark and glueball admixtures of the isosinglet scalar mesons below 2 GeV and
the current large uncertainties on the mass of the f0(600) and the f0(1370) are
studied. The framework is formulated in terms of two scalar meson nonets (a
two-quark nonet and a four-quark nonet) together with a scalar glueball. It is
shown that while some properties of these states are sensitive to the mass of
f0(600) and f0(1370), several relatively robust conclusions can be made: The
f0(600), the f0(980), and the f0(1370) are admixtures of two and four quark
components, with f0(600) being dominantly a non-strange four-quark state, and
f0(980) and f0(1370) having a dominant two-quark component. Similarly, the
f0(1500) and the f0(1710) have considerable two and four quark admixtures, but
in addition have a large glueball component. For each state, a detailed
analysis providing the numerical estimates of all components is given. It is
also shown that this framework clearly favors the experimental values:
m[f0(600)] < 700 MeV and m[f0(1370)] = 1300-1450 MeV. Moreover, an overall fit
to the available data shows a reciprocal substructure for the f0(600) and the
f0(1370), and a linear correlation between their masses of the form m
[f0(1370)] = 0.29 m[f0(600)] + 1.22 GeV. The scalar glueball mass of 1.5-1.7
GeV is found in this analysis.Comment: placement of figures inside text improved. Content unchange
Coulomb blockade and Kondo effect in the electronic structure of Hubbard molecules connected to metallic leads: a finite-temperature exact-diagonalization study
The electronic structure of small Hubbard molecules coupled between two
non-interacting semi-infinite leads is studied in the low bias-voltage limit.
To calculate the finite-temperature Green's function of the system, each lead
is simulated by a small cluster, so that the problem is reduced to that of a
finite-size system comprising the molecule and clusters on both sides. The
Hamiltonian parameters of the lead clusters are chosen such that their
embedding potentials coincide with those of the semi-infinite leads on
Matsubara frequencies. Exact diagonalization is used to evaluate the effect of
Coulomb correlations on the electronic properties of the molecule at finite
temperature. Depending on key Hamiltonian parameters, such as Coulomb
repulsion, one-electron hopping within the molecule, and hybridization between
molecule and leads, the molecular self-energy is shown to exhibit Fermi-liquid
behavior or deviations associated with finite low-energy scattering rates. The
method is shown to be sufficiently accurate to describe the formation of Kondo
resonances inside the correlation-induced pseudogaps, except in the limit of
extremely low temperatures. These results demonstrate how the system can be
tuned between the Coulomb blockade and Kondo regimes.Comment: 14 pages; 14 figure
Phase Transition in Hot Pion Matter
The equation of state for the pion gas is analyzed within the third virial
approximation. The second virial coefficient is found from the pion-pion-
scattering data, while the third one is considered as a free parameter. The
proposed model leads to a first-order phase transition from the pion gas to a
more dense phase at the temperature T_pt < 136 MeV. Due to relatively low
temperature this phase transition cannot be related to the deconfinement. This
suggests that a new phase of hadron matter - 'hot pion liquid' - may exist.Comment: 11 pages, Latex, 4 PS-figures. V2: A few misprints are corrected.
Acknowledgments are adde
- …
