Within a nonlinear chiral Lagrangian framework the correlations between the
quark and glueball admixtures of the isosinglet scalar mesons below 2 GeV and
the current large uncertainties on the mass of the f0(600) and the f0(1370) are
studied. The framework is formulated in terms of two scalar meson nonets (a
two-quark nonet and a four-quark nonet) together with a scalar glueball. It is
shown that while some properties of these states are sensitive to the mass of
f0(600) and f0(1370), several relatively robust conclusions can be made: The
f0(600), the f0(980), and the f0(1370) are admixtures of two and four quark
components, with f0(600) being dominantly a non-strange four-quark state, and
f0(980) and f0(1370) having a dominant two-quark component. Similarly, the
f0(1500) and the f0(1710) have considerable two and four quark admixtures, but
in addition have a large glueball component. For each state, a detailed
analysis providing the numerical estimates of all components is given. It is
also shown that this framework clearly favors the experimental values:
m[f0(600)] < 700 MeV and m[f0(1370)] = 1300-1450 MeV. Moreover, an overall fit
to the available data shows a reciprocal substructure for the f0(600) and the
f0(1370), and a linear correlation between their masses of the form m
[f0(1370)] = 0.29 m[f0(600)] + 1.22 GeV. The scalar glueball mass of 1.5-1.7
GeV is found in this analysis.Comment: placement of figures inside text improved. Content unchange