288 research outputs found
Recommended from our members
Considerations for reducing food system energy demand while scaling up urban agriculture
There is an increasing global interest in scaling up urban agriculture (UA) in its various forms, from private gardens to sophisticated commercial operations. Much of this interest is in the spirit of environmental protection, with reduced waste and transportation energy highlighted as some of the proposed benefits of UA; however, explicit consideration of energy and resource requirements needs to be made in order to realize these anticipated environmental benefits. A literature review is undertaken here to provide new insight into the energy implications of scaling up UA in cities in high-income countries, considering UA classification, direct/indirect energy pressures, and
interactions with other components of the food–energy–water nexus. This is followed by an exploration of ways in which these cities can plan for the exploitation of waste flows for resource-efficient UA.
Given that it is estimated that the food system contributes nearly 15% of total US energy demand, optimization of resource use in food production, distribution, consumption, and waste systems may have a significant energy impact. There are limited data available that quantify resource demand implications directly associated with UA systems, highlighting that the literature is not yet sufficiently
robust to make universal claims on benefits. This letter explores energy demand from conventional resource inputs, various production systems, water/energy trade-offs, alternative irrigation, packaging materials, and transportation/supply chains to shed light on UA-focused research needs.
By analyzing data and cases from the existing literature, we propose that gains in energy efficiency could be realized through the co-location of UA operations with waste streams (e.g. heat, CO2, greywater, wastewater, compost), potentially increasing yields and offsetting life cycle energy demands relative to conventional approaches. This begs a number of energy-focused UA research questions that explore the opportunities for integrating the variety of UA structures and technologies, so that they are better able to exploit these urban waste flows and achieve whole-system reductions in energy demand. Any planning approach to implement these must, as always, assess how context will
influence the viability and value added from the promotion of UA
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
Psychiatric diagnoses, trauma, and suicidiality
BACKGROUND: This study aimed to examine the associations between psychiatric diagnoses, trauma and suicidiality in psychiatric patients at intake. METHODS: During two months, all consecutive patients (n = 139) in a psychiatric hospital in Western Norway were interviewed (response rate 72%). RESULTS: Ninety-one percent had been exposed to at least one trauma; 69 percent had been repeatedly exposed to trauma for longer periods of time. Only 7% acquired a PTSD diagnosis. The comorbidity of PTSD and other psychiatric diagnoses were 78%. A number of diagnoses were associated with specific traumas. Sixty-seven percent of the patients reported suicidal thoughts in the month prior to intake; thirty-one percent had attempted suicide in the preceding week. Suicidal ideation, self-harming behaviour, and suicide attempts were associated with specific traumas. CONCLUSION: Traumatised patients appear to be under- or misdiagnosed which could have an impact on the efficiency of treatment
Towards sustainable agriculture: fossil-free ammonia
Citation: Pfromm, P. H. (2017). Towards sustainable agriculture: Fossil-free ammonia. Journal of Renewable and Sustainable Energy, 9(3), 034702. https://doi.org/10.1063/1.4985090About 40% of our food would not exist without synthetic ammonia (NH3) for fertilization. Yet, NH3 production is energy intensive. About 2% of the world's commercial energy is consumed as fossil fuels for NH3 synthesis based on the century-old Haber-Bosch (H.-B.) process. The state of the art and the opportunities for reducing the fossil energy footprint of industrial H.-B. NH3 synthesis are discussed. It is shown that even a hypothetical utterly revolutionary H.-B. catalyst could not significantly reduce the energy demand of H.-B. NH3 as this is governed by hydrogen production. Renewable energy-enabled, fossil-free NH3 synthesis is then evaluated based on the exceptional and continuing cost decline of renewable electricity. H.-B. syngas (H2, N2) is assumed to be produced by electrolysis and cryogenic air separation, and then supplied to an existing H.-B. synthesis loop. Fossil-free NH3 could be produced for energy costs of about $232 per tonne NH3 without claiming any economic benefits for the avoidance of about 1.5 tonnes of CO2 released per tonne NH3 compared to the most efficient H.-B. implementations. Research into alternatives to the H.-B. process might be best targeted at emerging markets with currently little NH3 synthesis capacity but significant future population growth such as Africa. Reduced capital intensity, good scale-down economics, tolerance for process upsets and contamination, and intermittent operability are some desirable characteristics of NH3 synthesis in less developed markets, and for stranded resources. Processes that are fundamentally different from H.-B. may come to the fore under these specific boundary conditions
Ventilatory muscle strength, diaphragm thickness and pulmonary function in world-class powerlifters.
Resistance training activates the ventilatory muscles providing a stimulus similar to ventilatory muscle training. We examined the effects of elite powerlifting training upon ventilatory muscle strength, pulmonary function and diaphragm thickness in world-class powerlifters (POWER) and a control group (CON) with no history of endurance or resistance training, matched for age, height and body mass
Preoperative external beam radiotherapy and reduced dose brachytherapy for carcinoma of the cervix: survival and pathological response
PURPOSE: To evaluate the pathologic response of cervical carcinoma to external beam radiotherapy (EBRT) and high dose rate brachytherapy (HDRB) and outcome. MATERIALS AND METHODS: Between 1992 and 2001, 67 patients with cervical carcinoma were submitted to preoperative radiotherapy. Sixty-five patients were stage IIb. Preoperative treatment included 45 Gy EBRT and 12 Gy HDRB. Patients were submitted to surgery after a mean time of 82 days. Lymphadenectomy was performed in 81% of patients. Eleven patients with residual cervix residual disease on pathological specimen were submitted to 2 additional insertions of HDRB. RESULTS: median follow up was 72 months. Five-year cause specific survival was 75%, overall survival 65%, local control 95%. Complete pelvic pathological response was seen in 40%. Surgery performed later than 80 days was associated with pathological response. Pelvic nodal involvement was found in 12%. Complete pelvic pathological response and negative lymphnodes were associated with better outcome (p = .03 and p = .005). Late grade 3 and 4 urinary and intestinal adverse effects were seen in 12 and 2% of patients. CONCLUSION: Time allowed between RT and surgery correlated with pathological response. Pelvic pathological response was associated with improved outcome. Postoperative additional HDRB did not improve therapeutic results. Treatment was well tolerated
Long-term follow-up after cancer rehabilitation using high-intensity resistance training: persistent improvement of physical performance and quality of life
The short-term beneficial effects of physical rehabilitation programmes after cancer treatment have been described. However, little is known regarding the long-term effects. The purpose of this study was to investigate the long-term effects of high-intensity resistance training compared with traditional recovery. A total of 68 cancer survivors who completed an 18-week resistance training programme were followed for 1 year. During the 1-year follow-up, 19 patients dropped out (14 due to recurrence of cancer). The remaining 49 patients of the intervention group were compared with a group of 22 patients treated with chemotherapy in the same period but not participating in any rehabilitation programme. Outcome measures were muscle strength, cardiopulmonary function, fatigue, and health-related quality of life. One year after completion of the rehabilitation programme, the outcome measures in the intervention group were still at the same level as immediately after rehabilitation. Muscle strength at 1 year was significantly higher in patients who completed the resistance training programme than in the comparison group. High-intensity resistance training has persistent effects on muscle strength, cardiopulmonary function, quality of life, and fatigue. Rehabilitation programmes for patients treated with chemotherapy with a curative intention should include high-intensity resistance training in their programme
The rice mitochondrial iron transporter is essential for plant growth
In plants, iron (Fe) is essential for mitochondrial electron transport, heme, and Fe-Sulphur (Fe-S) cluster synthesis; however, plant mitochondrial Fe transporters have not been identified. Here we show, identify and characterize the rice mitochondrial Fe transporter (MIT). Based on a transfer DNA library screen, we identified a rice line showing symptoms of Fe deficiency while accumulating high shoot levels of Fe. Homozygous knockout of MIT in this line resulted in a lethal phenotype. MIT localized to the mitochondria and complemented the growth of Δmrs3Δmrs4 yeast defective in mitochondrial Fe transport. The growth of MIT-knockdown (mit-2) plants was also significantly impaired despite abundant Fe accumulation. Further, the decrease in the activity of the mitochondrial and cytosolic Fe-S enzyme, aconitase, indicated that Fe-S cluster synthesis is affected in mit-2 plants. These results indicate that MIT is a mitochondrial Fe transporter essential for rice growth and development
Synthetic Mimic of Antimicrobial Peptide with Nonmembrane-Disrupting Antibacterial Properties
Proteolysis in dairy lactic acid bacteria has been studied in great detail by genetic, biochemical and ultrastructural methods. From these studies the picture emerges that the proteolytic systems of lactococci and lactobacilli are remarkably similar in their components and mode of action. The proteolytic system consists of an extracellularly located serine-proteinase, transport systems specific for di-tripeptides and oligopeptides (> 3 residues), and a multitude of intracellular peptidases. This review describes the properties and regulation of individual components as well as studies that have led to identification of their cellular localization. Targeted mutational techniques developed in recent years have made it possible to investigate the role of individual and combinations of enzymes in vivo. Based on these results as well as in vitro studies of the enzymes and transporters, a model for the proteolytic pathway is proposed. The main features are: (i) proteinases have a broad specificity and are capable of releasing a large number of different oligopeptides, of which a large fraction falls in the range of 4 to 8 amino acid residues; (ii) oligopeptide transport is the main route for nitrogen entry into the cell; (iii) all peptidases are located intracellularly and concerted action of peptidases is required for complete degradation of accumulated peptides.
Heterologous Expression of Membrane Proteins: Choosing the Appropriate Host
International audienceBACKGROUND: Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. METHODOLOGY/PRINCIPAL FINDINGS: The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. CONCLUSIONS/SIGNIFICANCE: Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein
- …