14 research outputs found

    Self-Assembling Polypeptide Hydrogels as a Platform to Recapitulate the Tumor Microenvironment

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-06-25, pub-electronic 2021-06-30Publication status: PublishedFunder: Innovate UKRI Research Knowledge Transfer Partnership; Grant(s): KTP: Self-assembling peptide matrices as a platform for cell biology studies and drug deliveryThe tumor microenvironment plays a critical role in modulating cancer cell migration, metabolism, and malignancy, thus, highlighting the need to develop in vitro culture systems that can recapitulate its abnormal properties. While a variety of stiffness-tunable biomaterials, reviewed here, have been developed to mimic the rigidity of the tumor extracellular matrix, culture systems that can recapitulate the broader extracellular context of the tumor microenvironment (including pH and temperature) remain comparably unexplored, partially due to the difficulty in independently tuning these parameters. Here, we investigate a self-assembled polypeptide network hydrogel as a cell culture platform and demonstrate that the culture parameters, including the substrate stiffness, extracellular pH and temperature, can be independently controlled. We then use this biomaterial as a cell culture substrate to assess the effect of stiffness, pH and temperature on Suit2 cells, a pancreatic cancer cell line, and demonstrate that these microenvironmental factors can regulate two critical transcription factors in cancer: yes-associated protein 1 (YAP) and hypoxia inducible factor (HIF-1A)

    Tamoxifen mechanically deactivates hepatic stellate cells via the G protein-coupled estrogen receptor

    Get PDF
    Tamoxifen has been used for many years to target estrogen receptor signalling in breast cancer cells. Tamoxifen is also an agonist of the G protein-coupled estrogen receptor (GPER), a GPCR ubiquitously expressed in tissues that mediates the acute response to estrogens. Here we report that tamoxifen promotes mechanical quiescence in hepatic stellate cells (HSCs), stromal fibroblast-like cells whose activation triggers and perpetuates liver fibrosis in hepatocellular carcinomas. This mechanical deactivation is mediated by the GPER/RhoA/myosin axis and induces YAP deactivation. We report that tamoxifen decreases the levels of hypoxia-inducible factor-1 alpha (HIF-1α) and the synthesis of extracellular matrix proteins through a mechanical mechanism that involves actomyosin-dependent contractility and mechanosensing of tissue stiffness. Our results implicate GPER-mediated estrogen signalling in the mechanosensory-driven activation of HSCs and put forward estrogenic signalling as an option for mechanical reprogramming of myofibroblast-like cells in the tumour microenvironment. Tamoxifen, with half a century of safe clinical use, might lead this strategy of drug repositioning.Peer reviewe

    Tamoxifen mechanically reprograms the tumor microenvironment via HIF‐1A and reduces cancer cell survival

    Get PDF
    The tumor microenvironment is fundamental to cancer progression, and the influence of its mechanical properties is increasingly being appreciated. Tamoxifen has been used for many years to treat estrogen‐positive breast cancer. Here we report that tamoxifen regulates the level and activity of collagen cross‐linking and degradative enzymes, and hence the organization of the extracellular matrix, via a mechanism involving both the G protein‐coupled estrogen receptor (GPER) and hypoxia‐inducible factor‐1 alpha (HIF‐1A). We show that tamoxifen reduces HIF‐1A levels by suppressing myosin‐dependent contractility and matrix stiffness mechanosensing. Tamoxifen also downregulates hypoxia‐regulated genes and increases vascularization in PDAC tissues. Our findings implicate the GPER/HIF‐1A axis as a master regulator of peri‐tumoral stromal remodeling and the fibrovascular tumor microenvironment and offer a paradigm shift for tamoxifen from a well‐established drug in breast cancer hormonal therapy to an alternative candidate for stromal targeting strategies in PDAC and possibly other cancers.See also: E Cortes et al (January 2019) andM Pein & T Oskarsson (January 2019)EMBO Reports (2019) 20: e46557Peer reviewe

    Compromising between European and US allergen immunotherapy schools: Discussions from GUIMIT, the Mexican immunotherapy guidelines

    Get PDF
    Background: Allergen immunotherapy (AIT) has a longstanding history and still remains the only disease-changing treatment for allergic rhinitis and asthma. Over the years 2 different schools have developed their strategies: the United States (US) and the European. Allergen extracts available in these regions are adapted to local practice. In other parts of the world, extracts from both regions and local ones are commercialized, as in Mexico. Here, local experts developed a national AIT guideline (GUIMIT 2019) searching for compromises between both schools. Methods: Using ADAPTE methodology for transculturizing guidelines and AGREE-II for evaluating guideline quality, GUIMIT selected 3 high-quality Main Reference Guidelines (MRGs): the European Academy of Allergy, Asthma and Immunology (EAACI) guideines, the S2k guideline of various German-speaking medical societies (2014), and the US Practice Parameters on Allergen Immunotherapy 2011. We formulated clinical questions and based responses on the fused evidence available in the MRGs, combined with local possibilities, patient's preference, and costs. We came across several issues on which the MRGs disagreed. These are presented here along with arguments of GUIMIT members to resolve them. GUIMIT (for a complete English version, see Supplementary data) concluded the following: Results: Related to the diagnosis of IgE-mediated respiratory allergy, apart from skin prick testing complementary tests (challenges, in vitro testing and molecular such as species-specific allergens) might be useful in selected cases to inform AIT composition. AIT is indicated in allergic rhinitis and suggested in allergic asthma (once controlled) and IgE-mediated atopic dermatitis. Concerning the correct subcutaneous AIT dose for compounding vials according to the US school: dosing tables and formula are given; up to 4 non-related allergens can be mixed, refraining from mixing high with low protease extracts. When using European extracts: the manufacturer's indications should be followed; in multi-allergic patients 2 simultaneous injections can be given (100% consensus); mixing is discouraged. In Mexico only allergoid tablets are available; based on doses used in all sublingual immunotherapy (SLIT) publications referenced in MRGs, GUIMIT suggests a probable effective dose related to subcutaneous immunotherapy (SCIT) might be: 50–200% of the monthly SCIT dose given daily, maximum mixing 4 allergens. Also, a table with practical suggestions on non-evidence-existing issues, developed with a simplified Delphi method, is added. Finally, dissemination and implementation of guidelines is briefly discussed, explaining how we used online tools for this in Mexico. Conclusions: Countries where European and American AIT extracts are available should adjust AIT according to which school is followed

    Tamoxifen mechanically deactivates hepatic stellate cells via the G protein-coupled estrogen receptor

    Get PDF
    Tamoxifen has been used for many years to target estrogen receptor signalling in breast cancer cells. Tamoxifen is also an agonist of the G protein-coupled estrogen receptor (GPER), a GPCR ubiquitously expressed in tissues that mediates the acute response to estrogens. Here we report that tamoxifen promotes mechanical quiescence in hepatic stellate cells (HSCs), stromal fibroblast-like cells whose activation triggers and perpetuates liver fibrosis in hepatocellular carcinomas. This mechanical deactivation is mediated by the GPER/RhoA/myosin axis and induces YAP deactivation. We report that tamoxifen decreases the levels of hypoxia-inducible factor-1 alpha (HIF-1α) and the synthesis of extracellular matrix proteins through a mechanical mechanism that involves actomyosin-dependent contractility and mechanosensing of tissue stiffness. Our results implicate GPER-mediated estrogen signalling in the mechanosensory-driven activation of HSCs and put forward estrogenic signalling as an option for mechanical reprogramming of myofibroblast-like cells in the tumour microenvironment. Tamoxifen, with half a century of safe clinical use, might lead this strategy of drug repositioning.Peer reviewe

    Cross-linking of a biopolymer-peptide co-assembling system

    Get PDF
    Producción CientíficaThe ability to guide molecular self-assembly at the nanoscale into complex macroscopic structures could enable the development of functional synthetic materials that exhibit properties of natural tissues such as hierarchy, adaptability, and self-healing. However, the stability and structural integrity of these kinds of materials remains a challenge for many practical applications. We have recently developed a dynamic biopolymer-peptide co-assembly system with the capacity to grow and undergo morphogenesis into complex shapes. Here we explored the potential of different synthetic (succinimidyl carboxymethyl ester, poly (ethylene glycol) ether tetrasuccinimidyl glutarate and glutaraldehyde) and natural (genipin) cross-linking agents to stabilize membranes made from these biopolymer-peptide co-assemblies. We investigated the cross-linking efficiency, resistance to enzymatic degradation, and mechanical properties of the different cross-linked membranes. We also compared their biocompatibility by assessing the metabolic activity and morphology of adipose-derived stem cells (ADSC) cultured on the different membranes. While all cross-linkers successfully stabilized the system under physiological conditions, membranes cross-linked with genipin exhibited better resistance in physiological environments, improved stability under enzymatic degradation, and a higher degree of in vitro cytocompatibility compared to the other cross-linking agents. The results demonstrated that genipin is an attractive candidate to provide functional structural stability to complex self-assembling structures for potential tissue engineering or in vitro model applications.Ministerio de Economía, Industria y Competitividad (Project MAT2013-42473-R and MAT2015-68901R)Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA244U13, VA313U14 and VA015U

    Anafilaxia en niños y adultos: prevención, diagnóstico y tratamiento

    Get PDF
    La anafilaxia es una condición que requiere asistencia inmediata para su resolución, se puede presentar en diferentes entornos: consultorio, hospital, escuela, hogar o en algún otro espacio público. La información aquí contenida forma parte de lineamientos conocidos sobre prevención, diagnóstico y tratamiento. Se abordan aspectos epidemiológicos, desencadenantes, factores de riesgo y cofactores; se explican de una manera didáctica los mecanismos fisiopatológicos que se traducen en fenotipos de presentación. Se enfatiza el diagnóstico clínico con base en criterios ya establecidos, se mencionan clasificaciones para evaluar la gravedad de la reacción, así como el rol de las pruebas clínicas o de laboratorio. Como aspectos de relevancia, se abordan el tratamiento de primera elección con adrenalina, instrucciones sobre autoinyectores y diferentes elementos para el tratamiento complementario y de segunda elección. También se refieren aspectos a considerar al dar de alta a un paciente y medidas de seguimiento, con un énfasis preventivo en la comunidad. Finalmente, se menciona el abordaje en el consultorio de alergia para decidir sobre opciones de inmunomodulación. ABSTRACT Anaphylaxis is a condition that requires immediate assistance for its resolution, it can occur in different settings: office, hospital, school, home or some other public space. The information contained herein forms part of known guidelines on prevention, diagnosis and treatment. Epidemiological aspects, triggers, risk factors and co-factors are addressed; physiopathological mechanisms that are translated into presentation phenotypes are explained in a didactic way. Clinical diagnosis is emphasized based on established criteria, classifications are mentioned to evaluate the severity of the reaction, as well as the role of clinical or laboratory tests. As relevant aspects, the first choice treatment with adrenaline, instructions on auto-injectors and different elements for the complementary and second choice treatment are dealt with. They also refer to aspects to consider when discharging a patient and followup measures, with a preventive emphasis on the community. Finally, the allergy clinic approach to deciding on immunomodulation options is mentione

    GUIMIT 2019, Guía mexicana de inmunoterapia. Guía de diagnóstico de alergia mediada por IgE e inmunoterapia aplicando el método ADAPTE

    Get PDF

    Self-Assembling Polypeptide Hydrogels as a Platform to Recapitulate the Tumor Microenvironment

    No full text
    The tumor microenvironment plays a critical role in modulating cancer cell migration, metabolism, and malignancy, thus, highlighting the need to develop in vitro culture systems that can recapitulate its abnormal properties. While a variety of stiffness-tunable biomaterials, reviewed here, have been developed to mimic the rigidity of the tumor extracellular matrix, culture systems that can recapitulate the broader extracellular context of the tumor microenvironment (including pH and temperature) remain comparably unexplored, partially due to the difficulty in independently tuning these parameters. Here, we investigate a self-assembled polypeptide network hydrogel as a cell culture platform and demonstrate that the culture parameters, including the substrate stiffness, extracellular pH and temperature, can be independently controlled. We then use this biomaterial as a cell culture substrate to assess the effect of stiffness, pH and temperature on Suit2 cells, a pancreatic cancer cell line, and demonstrate that these microenvironmental factors can regulate two critical transcription factors in cancer: yes-associated protein 1 (YAP) and hypoxia inducible factor (HIF-1A)

    Retinoic acid receptor β modulates mechanosensing and invasion in pancreatic cancer cells via myosin light chain 2

    Get PDF
    Abstract Pancreatic ductal adenocarcinoma (PDAC) is the most common and lethal form of pancreatic cancer, characterised by stromal remodelling, elevated matrix stiffness and high metastatic rate. Retinoids, compounds derived from vitamin A, have a history of clinical use in cancer for their anti-proliferative and differentiation effects, and more recently have been explored as anti-stromal therapies in PDAC for their ability to induce mechanical quiescence in cancer associated fibroblasts. Here, we demonstrate that retinoic acid receptor β (RAR-β) transcriptionally represses myosin light chain 2 (MLC-2) expression in pancreatic cancer cells. As a key regulatory component of the contractile actomyosin machinery, MLC-2 downregulation results in decreased cytoskeletal stiffness and traction force generation, impaired response to mechanical stimuli via mechanosensing and reduced ability to invade through the basement membrane. This work highlights the potential of retinoids to target the mechanical drivers of pancreatic cancer
    corecore