103 research outputs found

    Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC)

    Get PDF
    Microbial electrolysis cells (MEC) must work around neutral pH because of microbial catalysis at the anode. To develop a hydrogen evolution cathode that can work at neutral pH remains a major challenge in MEC technology. Voltammetry performed at pH 8.0 on rotating disk electrodes showed that the presence of phosphate species straightforwardly multiplied the current density of hydrogen evolution, through the so-called cathodic deprotonation reaction. The mechanism was stable on stainless steel cathodes whereas it rapidly vanished on platinum. The phosphate/stainless steel system implemented in a 25 L MEC with a marine microbial anode led to hydrogen evolution rates of up to 4.9 L/h/m2 under 0.8 V voltage, which were of the same order than the best performance values reported so far. Keywords: Hydrogen; Microbial electrolysis cell (MEC); Stainless steel; Phosphat

    Fatigue, quality of life and physical fitness following an exercise intervention in multiple myeloma survivors (MASCOT): an exploratory randomised Phase 2 trial utilising a modified Zelen design

    Get PDF
    Background: Exercise may improve fatigue in multiple myeloma survivors, but trial evidence is limited, and exercise may be perceived as risky in this older patient group with osteolytic bone destruction. / Methods: In this Phase 2 Zelen trial, multiple myeloma survivors who had completed treatment at least 6 weeks ago, or were on maintenance only, were enrolled in a cohort study and randomly assigned to usual care or a 6-month exercise programme of tailored aerobic and resistance training. Outcome assessors and usual care participants were masked. The primary outcome was the FACIT-F fatigue score with higher scores denoting less fatigue. / Results: During 2014–2016, 131 participants were randomised 3:1 to intervention (n = 89) or usual care (n = 42) to allow for patients declining allocation to the exercise arm. There was no difference between groups in fatigue at 3 months (between-group mean difference: 1.6 [95% CI: −1.1–4.3]) or 6 months (0.3 [95% CI: −2.6–3.1]). Muscle strength improved at 3 months (8.4 kg [95% CI: 0.5–16.3]) and 6 months (10.8 kg [95% CI: 1.2–20.5]). Using per-protocol analysis, cardiovascular fitness improved at 3 months (+1.2 ml/kg/min [95% CI: 0.3–3.7]). In participants with clinical fatigue (n = 17), there was a trend towards less fatigue with exercise over 6 months (6.3 [95% CI: −0.6–13.3]). There were no serious adverse events. / Conclusions: Exercise appeared safe and improved muscle strength and cardiovascular fitness, but benefits in fatigue appeared limited to participants with clinical fatigue at baseline. Future studies should focus on patients with clinical fatigue. / Clinical trial registration: The study was registered with ISRCTN (38480455) and is completed

    Prior Coronary Artery Bypass Graft Surgery and Outcome After Percutaneous Coronary Intervention: An Observational Study From the Pan-London Percutaneous Coronary Intervention Registry.

    Get PDF
    Background Limited information exists regarding procedural success and clinical outcomes in patients with previous coronary artery bypass grafting (CABG) undergoing percutaneous coronary intervention (PCI). We sought to compare outcomes in patients undergoing PCI with or without CABG. Methods and Results This was an observational cohort study of 123 780 consecutive PCI procedures from the Pan-London (UK) PCI registry from 2005 to 2015. The primary end point was all-cause mortality at a median follow-up of 3.0 years (interquartile range, 1.2-4.6 years). A total of 12 641(10.2%) patients had a history of previous CABG, of whom 29.3% (n=3703) underwent PCI to native vessels and 70.7% (n=8938) to bypass grafts. There were significant differences in the demographic, clinical, and procedural characteristics of these groups. The risk of mortality during follow-up was significantly higher in patients with prior CABG (23.2%; P=0.0005) compared with patients with no prior CABG (12.1%) and was seen for patients who underwent either native vessel (20.1%) or bypass graft PCI (24.2%; P<0.0001). However, after adjustment for baseline characteristics, there was no significant difference in outcomes seen between the groups when PCI was performed in native vessels in patients with previous CABG (hazard ratio [HR],1.02; 95%CI, 0.77-1.34; P=0.89), but a significantly higher mortality was seen among patients with PCI to bypass grafts (HR,1.33; 95% CI, 1.03-1.71; P=0.026). This was seen after multivariate adjustment and propensity matching. Conclusions Patients with prior CABG were older with greater comorbidities and more complex procedural characteristics, but after adjustment for these differences, the clinical outcomes were similar to the patients undergoing PCI without prior CABG. In these patients, native-vessel PCI was associated with better outcomes compared with the treatment of vein grafts

    Remediation of radioiodine using polyamine anion exchange resins

    Get PDF
    Two weak base anion exchange resins, Lewatit A365 and Purolite MTS9850, have been tested for the removal of aqueous iodide from conditions simulating nuclear waste reprocessing streams. pH variation and relevant co-contaminant addition (nitrate, molybdate and iodine) allowed for assessment of iodide extraction behaviour of each resin. Isotherm experiments were performed and maximum uptake capacities obtained exceed current industrial adsorbents, such as silver-impregnated zeolites. Maximum loading capacities, determined by Dubinin–Radushkevich isotherm, were 761 ± 14 mg g−1 for MTS9850 and 589 ± 15 mg g−1 for A365. Uptake for both resins was significantly suppressed by nitrate and molybdate ions. The presence of dissolved iodine in the raffinate however, was found to increase iodide uptake. This was explained by characterisation of the spent resin surface by infrared and Raman spectroscopy, which determined the presence of triiodide, indicating charge-transfer complex formation on the surface. Dynamic studies assessed the effect of co-contaminants on iodide uptake in a column environment. Data was fitted to three dynamic models, with the Dose-Response model providing the best description of breakthrough. In all cases iodide breakthrough was accelerated, indicating suppression of uptake, but capacity was still significant

    Male urine signals social rank in the Mozambique tilapia (Oreochromis mossambicus)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The urine of freshwater fish species investigated so far acts as a vehicle for reproductive pheromones affecting the behaviour and physiology of the opposite sex. However, the role of urinary pheromones in intra-sexual competition has received less attention. This is particularly relevant in lek-breeding species, such as the Mozambique tilapia (<it>Oreochromis mossambicus</it>), where males establish dominance hierarchies and there is the possibility for chemical communication in the modulation of aggression among males. To investigate whether males use urine during aggressive interactions, we measured urination frequency of dye-injected males during paired interactions between size-matched males. Furthermore, we assessed urinary volume stored in the bladder of males in a stable social hierarchy and the olfactory potency of their urine by recording of the electro-olfactogram.</p> <p>Results</p> <p>Males released urine in pulses of short duration (about one second) and markedly increased urination frequency during aggressive behaviour, but did not release urine whilst submissive. In the stable hierarchy, subordinate males stored less urine than males of higher social rank; the olfactory potency of the urine was positively correlated with the rank of the male donor.</p> <p>Conclusion</p> <p>Dominant males store urine and use it as a vehicle for odorants actively released during aggressive disputes. The olfactory potency of the urine is positively correlated with the social status of the male. We suggest that males actively advertise their dominant status through urinary odorants which may act as a 'dominance' pheromone to modulate aggression in rivals, thereby contributing to social stability within the lek.</p

    Snake Bite in South Asia: A Review

    Get PDF
    Snake bite is one of the most neglected public health issues in poor rural communities living in the tropics. Because of serious misreporting, the true worldwide burden of snake bite is not known. South Asia is the world's most heavily affected region, due to its high population density, widespread agricultural activities, numerous venomous snake species and lack of functional snake bite control programs. Despite increasing knowledge of snake venoms' composition and mode of action, good understanding of clinical features of envenoming and sufficient production of antivenom by Indian manufacturers, snake bite management remains unsatisfactory in this region. Field diagnostic tests for snake species identification do not exist and treatment mainly relies on the administration of antivenoms that do not cover all of the important venomous snakes of the region. Care-givers need better training and supervision, and national guidelines should be fed by evidence-based data generated by well-designed research studies. Poorly informed rural populations often apply inappropriate first-aid measures and vital time is lost before the victim is transported to a treatment centre, where cost of treatment can constitute an additional hurdle. The deficiency of snake bite management in South Asia is multi-causal and requires joint collaborative efforts from researchers, antivenom manufacturers, policy makers, public health authorities and international funders

    Human-Specific Evolution and Adaptation Led to Major Qualitative Differences in the Variable Receptors of Human and Chimpanzee Natural Killer Cells

    Get PDF
    Natural killer (NK) cells serve essential functions in immunity and reproduction. Diversifying these functions within individuals and populations are rapidly-evolving interactions between highly polymorphic major histocompatibility complex (MHC) class I ligands and variable NK cell receptors. Specific to simian primates is the family of Killer cell Immunoglobulin-like Receptors (KIR), which recognize MHC class I and associate with a range of human diseases. Because KIR have considerable species-specificity and are lacking from common animal models, we performed extensive comparison of the systems of KIR and MHC class I interaction in humans and chimpanzees. Although of similar complexity, they differ in genomic organization, gene content, and diversification mechanisms, mainly because of human-specific specialization in the KIR that recognizes the C1 and C2 epitopes of MHC-B and -C. Humans uniquely focused KIR recognition on MHC-C, while losing C1-bearing MHC-B. Reversing this trend, C1-bearing HLA-B46 was recently driven to unprecedented high frequency in Southeast Asia. Chimpanzees have a variety of ancient, avid, and predominantly inhibitory receptors, whereas human receptors are fewer, recently evolved, and combine avid inhibitory receptors with attenuated activating receptors. These differences accompany human-specific evolution of the A and B haplotypes that are under balancing selection and differentially function in defense and reproduction. Our study shows how the qualitative differences that distinguish the human and chimpanzee systems of KIR and MHC class I predominantly derive from adaptations on the human line in response to selective pressures placed on human NK cells by the competing needs of defense and reproduction

    Stiffness of the human foot and evolution of the transverse arch

    Get PDF
    The stiff human foot enables an efficient push-off when walking or running, and was critical for the evolution of bipedalism(1-6). The uniquely arched morphology of the human midfoot is thought to stiffen it(5-9), whereas other primates have flat feet that bend severely in the midfoot(7,10,11). However, the relationship between midfoot geometry and stiffness remains debated in foot biomechanics(12,13), podiatry(14,15) and palaeontology(4-6). These debates centre on the medial longitudinal arch(5,6) and have not considered whether stiffness is affected by the second, transverse tarsal arch of the human foot(16). Here we show that the transverse tarsal arch, acting through the inter-metatarsal tissues, is responsible for more than 40% of the longitudinal stiffness of the foot. The underlying principle resembles a floppy currency note that stiffens considerably when it curls transversally. We derive a dimensionless curvature parameter that governs the stiffness contribution of the transverse tarsal arch, demonstrate its predictive power using mechanical models of the foot and find its skeletal correlate in hominin feet. In the foot, the material properties of the inter-metatarsal tissues and the mobility of the metatarsals may additionally influence the longitudinal stiffness of the foot and thus the curvature-stiffness relationship of the transverse tarsal arch. By analysing fossils, we track the evolution of the curvature parameter among extinct hominins and show that a human-like transverse arch was a key step in the evolution of human bipedalism that predates the genus Homo by at least 1.5 million years. This renewed understanding of the foot may improve the clinical treatment of flatfoot disorders, the design of robotic feet and the study of foot function in locomotion

    Nanostructural Diversity of Synapses in the Mammalian Spinal Cord

    Get PDF
    This work for funded by the Biotechnology and Biological Sciences Research Council (BBSRC; BB/M021793/1), RS MacDonald Charitable Trust, Motor Neurone Disease (MND) Association UK (Miles/Apr18/863-791), the Engineering and Physical Sciences Research Council (EPSRC; EP/P030017/1), Welcome Trust (202932/Z/16/Z), European Research Council (ERC; 695568) and the Simons Initiative for the Developing Brain.Functionally distinct synapses exhibit diverse and complex organisation at molecular and nanoscale levels. Synaptic diversity may be dependent on developmental stage, anatomical locus and the neural circuit within which synapses reside. Furthermore, astrocytes, which align with pre and post-synaptic structures to form “tripartite synapses”, can modulate neural circuits and impact on synaptic organisation. In this study, we aimed to determine which factors impact the diversity of excitatory synapses throughout the lumbar spinal cord. We used PSD95-eGFP mice, to visualise excitatory postsynaptic densities (PSDs) using high-resolution and super-resolution microscopy. We reveal a detailed and quantitative map of the features of excitatory synapses in the lumbar spinal cord, detailing synaptic diversity that is dependent on developmental stage, anatomical region and whether associated with VGLUT1 or VGLUT2 terminals. We report that PSDs are nanostructurally distinct between spinal laminae and across age groups. PSDs receiving VGLUT1 inputs also show enhanced nanostructural complexity compared with those receiving VGLUT2 inputs, suggesting pathway-specific diversity. Finally, we show that PSDs exhibit greater nanostructural complexity when part of tripartite synapses, and we provide evidence that astrocytic activation enhances PSD95 expression. Taken together, these results provide novel insights into the regulation and diversification of synapses across functionally distinct spinal regions and advance our general understanding of the ‘rules’ governing synaptic nanostructural organisation.Publisher PDFPeer reviewe
    corecore