1,878 research outputs found

    Stable inhibition-related inferior frontal hypoactivation and fronto-limbic hyperconnectivity in obsessive–compulsive disorder after concentrated exposure therapy

    Get PDF
    Response inhibition has previously been suggested as an endophenotype for obsessive–compulsive disorder (OCD), evidenced by studies showing worse task performance, and altered task-related activation and connectivity. However, it’s unclear if these measures change following treatment. In this study, 31 OCD patients and 28 healthy controls performed a stop signal task during 3 T functional magnetic resonance imaging before treatment, while 24 OCD patients and 17 healthy controls were rescanned one week and three months after concentrated exposure and response prevention over four consecutive days using Bergen 4-Day Format. To study changes over time we performed a longitudinal analysis on stop signal reaction time and task-related activation and amygdala connectivity during successful and failed inhibition. Results showed that there was no group difference in task performance. Before treatment, OCD patients compared to controls showed less inhibition-related activation in the right inferior frontal gyrus, and increased functional connectivity between the right amygdala and the right inferior frontal gyrus and pre-supplementary motor area. During error-processing, OCD patients versus controls showed less activation in the pre-SMA before treatment. These group differences did not change after treatment. Pre-treatment task performance, brain activation, and connectivity were unrelated to the degree of symptom improvement after treatment. In conclusion, inferior frontal gyrus hypoactivation and increased fronto-limbic connectivity are likely trait markers of OCD that remain after effective exposure therapy.publishedVersio

    Effects of Bergen 4-Day Treatment on Resting-State Graph Features in Obsessive-Compulsive Disorder

    Get PDF
    Background Exposure and response prevention is an effective treatment for obsessive-compulsive disorder (OCD), but it is unclear how symptom reduction is related to changes in the brain. We aimed to determine the effects of a 4-day concentrated exposure and response prevention program (Bergen 4-day treatment) on the static and dynamic functional connectome in patients with OCD. Methods Thirty-four patients with OCD (25 unmedicated) underwent resting-state functional magnetic resonance imaging the day before the Bergen 4-day treatment, and 28 (21 unmedicated) were rescanned after 1 week. Twenty-eight healthy control subjects were also scanned for baseline comparisons and 19 of them were rescanned after 1 week. Static and dynamic graph measures were quantified to determine network topology at the global, subnetwork, and regional levels (including efficiency, clustering, between-subnetwork connectivity, and node flexibility in module allegiance). The Yale-Brown Obsessive Compulsive Scale was used to measure symptom severity. Results Twenty-four patients (86%) responded to treatment. We found significant group × time effects in frontoparietal-limbic connectivity (ηp2 = .19, p = .03) and flexibility of the right subgenual anterior cingulate cortex (ηp2 = .18, p = .03), where, in both cases, unmedicated patients showed significant decreases while healthy control subjects showed no significant changes. Healthy control subjects showed increases in global and subnetwork efficiency and clustering coefficient, particularly in the somatomotor subnetwork. Conclusions Concentrated exposure and response prevention in unmedicated patients with OCD leads to decreased connectivity between the frontoparietal and limbic subnetworks and less flexibility of the connectivity of the subgenual anterior cingulate cortex, suggesting a more independent and stable network topology. This may represent less limbic interference on cognitive control subnetworks after treatment.acceptedVersio

    Pathogenesis of cerebral malformations in human fetuses with meningomyelocele

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fetal spina bifida aperta (SBA) is characterized by a spinal meningomyelocele (MMC) and associated with cerebral pathology, such as hydrocephalus and Chiari II malformation. In various animal models, it has been suggested that a loss of ventricular lining (neuroepithelial/ependymal denudation) may trigger cerebral pathology. In fetuses with MMC, little is known about neuroepithelial/ependymal denudation and the initiating pathological events.</p> <p>The objective of this study was to investigate whether neuroepithelial/ependymal denudation occurs in human fetuses and neonates with MMC, and if so, whether it is associated with the onset of hydrocephalus.</p> <p>Methods</p> <p>Seven fetuses and 1 neonate (16–40 week gestational age, GA) with MMC and 6 fetuses with normal cerebral development (22–41 week GA) were included in the study. Identification of fetal MMC and clinical surveillance of fetal head circumference and ventricular width was performed by ultrasound (US). After birth, MMC was confirmed by histology. We characterized hydrocephalus by increased head circumference in association with ventriculomegaly. The median time interval between fetal cerebral ultrasound and fixing tissue for histology was four days.</p> <p>Results</p> <p>At 16 weeks GA, we observed neuroepithelial/ependymal denudation in the aqueduct and telencephalon together with sub-cortical heterotopias in absence of hydrocephalus and/or Chiari II malformation. At 21–34 weeks GA, we observed concurrence of aqueductal neuroepithelial/ependymal denudation and progenitor cell loss with the Chiari II malformation, whereas hydrocephalus was absent. At 37–40 weeks GA, neuroepithelial/ependymal denudation coincided with Chiari II malformation and hydrocephalus. Sub-arachnoidal fibrosis at the convexity was absent in all fetuses but present in the neonate.</p> <p>Conclusion</p> <p>In fetal SBA, neuroepithelial/ependymal denudation in the telencephalon and the aqueduct can occur before Chiari II malformation and/or hydrocephalus. Since denuded areas cannot re-establish cell function, neuro-developmental consequences could induce permanent cerebral pathology.</p

    Disentangling Within- and Between-Person Effects During Response Inhibition in Obsessive-Compulsive Disorder

    Get PDF
    Background: Obsessive-compulsive disorder (OCD) has been related to worse performance, abnormal brain activity, and functional connectivity during response inhibition. Whether these findings are indications of stable traits that contribute to the development of the disorder, or whether they are a result of the state severity of obsessions and anxiety, remains unclear since previous research mainly has employed cross-sectional designs. The present study aimed to assess longitudinal between- and within-person relationships between symptoms, task performance, right inferior frontal gyrus brain activation, and connectivity between the right amygdala and the right pre-supplementary motor area in 29 OCD patients before and after concentrated exposure and response prevention treatment. Method: Patients received exposure and response prevention delivered during 4 consecutive days, following the Bergen 4-day Treatment format. Patients performed a Stop Signal Task during 3T functional Magnetic Resonance Imaging the day before treatment, as well as 1 week and 3 months after treatment completion. Multilevel models were used to analyze disaggregated within- and between-person effects over time. Independent variables were scores on the symptom severity scales for OCD, anxiety, depression, and state distress during scanning. Dependent variables were reaction time for go trials, stop signal response time, task-related brain activation and connectivity. Results: A positive between-person effect was found for obsessive-compulsive, anxiety, and depressive symptom severity on go trial reaction time, indicating that patients with higher symptom scores on average respond slower during accurate go trials. We also found no significant between- or within-person relations between symptom severity and task-related activation or fronto-limbic connectivity. Conclusions: The between-person findings may point toward a general association between slower processing speed and symptom severity in OCD. Longitudinal studies should disaggregate between- and within-person effects to better understand variation over time.publishedVersio

    Small body harvest with the Antarctic Search for Transiting Exoplanets (ASTEP) project

    Full text link
    Small Solar system bodies serve as pristine records that have been minimally altered since their formation. Their observations provide valuable information regarding the formation and evolution of our Solar system. Interstellar objects (ISOs) can also provide insight on the formation of exoplanetary systems and planetary system evolution as a whole. In this work, we present the application of our framework to search for small Solar system bodies in exoplanet transit survey data collected by the Antarctic Search for Transiting ExoPlanets (ASTEP) project. We analysed data collected during the Austral winter of 2021 by the ASTEP 400 telescope located at the Concordia Station, at Dome C, Antarctica. We identified 20 known objects from dynamical classes ranging from Inner Main-belt asteroids to one comet. Our search recovered known objects down to a magnitude of VV = 20.4 mag, with a retrieval rate of \sim80% for objects with VV \le 20 mag. Future work will apply the pipeline to archival ASTEP data that observed fields for periods of longer than a few hours to treat them as deep-drilling datasets and reach fainter limiting magnitudes for slow-moving objects, on the order of VV\approx 23-24 mag.Comment: Accepted for publication in MNRAS (Monthly Notices of the Royal Astronomical Society), 9 pages, 8 figure

    Long-term Mortality in HIV-Positive Individuals Virally Suppressed for >3 Years With Incomplete CD4 Recovery

    Get PDF
    Virally suppressed HIV-positive individuals on combination antiretroviral therapy who do not achieve a CD4 count >200 cells/µL have substantially increased long-term mortality. The increased mortality was seen across different patient groups and for all causes of deat

    Highly Pathogenic H5N1 Influenza Viruses Carry Virulence Determinants beyond the Polybasic Hemagglutinin Cleavage Site

    Get PDF
    Highly pathogenic avian influenza viruses (HPAIV) originate from avirulent precursors but differ from all other influenza viruses by the presence of a polybasic cleavage site in their hemagglutinins (HA) of subtype H5 or H7. In this study, we investigated the ability of a low-pathogenic avian H5N1 strain to transform into an HPAIV. Using reverse genetics, we replaced the monobasic HA cleavage site of the low-pathogenic strain A/Teal/Germany/Wv632/2005 (H5N1) (TG05) by a polybasic motif from an HPAIV (TG05poly). To elucidate the virulence potential of all viral genes of HPAIV, we generated two reassortants carrying the HA from the HPAIV A/Swan/Germany/R65/06 (H5N1) (R65) plus the remaining genes from TG05 (TG05-HAR65) or in reversed composition the mutated TG05 HA plus the R65 genes (R65-HATG05poly). In vitro, TG05poly and both reassortants were able to replicate without the addition of trypsin, which is characteristic for HPAIV. Moreover, in contrast to avirulent TG05, the variants TG05poly, TG05-HAR65, and R65-HATG05poly are pathogenic in chicken to an increasing degree. Whereas the HA cleavage site mutant TG05poly led to temporary non-lethal disease in all animals, the reassortant TG05-HAR65 caused death in 3 of 10 animals. Furthermore, the reassortant R65-HATG05poly displayed the highest lethality as 8 of 10 chickens died, resembling “natural” HPAIV strains. Taken together, acquisition of a polybasic HA cleavage site is only one necessary step for evolution of low-pathogenic H5N1 strains into HPAIV. However, these low-pathogenic strains may already have cryptic virulence potential. Moreover, besides the polybasic cleavage site, the additional virulence determinants of H5N1 HPAIV are located within the HA itself and in other viral proteins

    3D genomics across the tree of life reveals condensin II as a determinant of architecture type

    Get PDF
    We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional(3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedlyduring eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with theabsence of condensin II subunits. Moreover, condensin II depletion converts the architecture of thehuman genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state,centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physicalmodel in which lengthwise compaction of chromosomes by condensin II during mitosis determineschromosome-scale genome architecture, with effects that are retained during the subsequent interphase.This mechanism likely has been conserved since the last common ancestor of all eukaryotes.C.H. is supported by the Boehringer Ingelheim Fonds; C.H., Á.S.C., and B.D.R. are supported by an ERC CoG (772471, “CohesinLooping”); A.M.O.E. and B.D.R. are supported by the Dutch Research Council (NWO-Echo); and J.A.R. and R.H.M. are supported by the Dutch Cancer Society (KWF). T.v.S. and B.v.S. are supported by NIH Common Fund “4D Nucleome” Program grant U54DK107965. H.T. and E.d.W. are supported by an ERC StG (637597, “HAP-PHEN”). J.A.R., T.v.S., H.T., R.H.M., B.v.S., and E.d.W. are part of the Oncode Institute, which is partly financed by the Dutch Cancer Society. Work at the Center for Theoretical Biological Physics is sponsored by the NSF (grants PHY-2019745 and CHE-1614101) and by the Welch Foundation (grant C-1792). V.G.C. is funded by FAPESP (São Paulo State Research Foundation and Higher Education Personnel) grants 2016/13998-8 and 2017/09662-7. J.N.O. is a CPRIT Scholar in Cancer Research. E.L.A. was supported by an NSF Physics Frontiers Center Award (PHY-2019745), the Welch Foundation (Q-1866), a USDA Agriculture and Food Research Initiative grant (2017-05741), the Behavioral Plasticity Research Institute (NSF DBI-2021795), and an NIH Encyclopedia of DNA Elements Mapping Center Award (UM1HG009375). Hi-C data for the 24 species were created by the DNA Zoo Consortium (www.dnazoo.org). DNA Zoo is supported by Illumina, Inc.; IBM; and the Pawsey Supercomputing Center. P.K. is supported by the University of Western Australia. L.L.M. was supported by NIH (1R01NS114491) and NSF awards (1557923, 1548121, and 1645219) and the Human Frontiers Science Program (RGP0060/2017). The draft A. californica project was supported by NHGRI. J.L.G.-S. received funding from the ERC (grant agreement no. 740041), the Spanish Ministerio de Economía y Competitividad (grant no. BFU2016-74961-P), and the institutional grant Unidad de Excelencia María de Maeztu (MDM-2016-0687). R.D.K. is supported by NIH grant RO1DK121366. V.H. is supported by NIH grant NIH1P41HD071837. K.M. is supported by a MEXT grant (20H05936). M.C.W. is supported by the NIH grants R01AG045183, R01AT009050, R01AG062257, and DP1DK113644 and by the Welch Foundation. E.F. was supported by NHGR
    corecore