293 research outputs found

    The absence of crystalline silicates in the diffuse interstellar medium

    Full text link
    We have studied the dust along the line-of-sight towards the Galactic Center using Short Wavelength Spectrometer (SWS) data obtained with the Infrared Space Observatory (ISO). We focussed on the wavelength region from 8-13 micron which is dominated by the strong silicate absorption feature. Using the absorption profiles observed towards Galactic Center Sources (GCS) 3 and 4, which are C-rich Wolf-Rayet Stars, as reference objects, we are able to disentangle the interstellar silicate absorption and the silicate emission intrinsic to the source, toward Sgr A* and derive a very accurate profile for the intrinsic 9.7 micron band. The interstellar absorption band is smooth and featureless and is well reproduced using a mixture of 15.1% amorphous pyroxene and 84.9% of amorphous olivine by mass, all in spherical sub-micron-sized grains. There is no direct evidence for substructure due to interstellar crystalline silicates. We are able to determine an upper limit to the degree of crystallinity of silicates in the diffuse interstellar medium (ISM), and conclude that the crystalline fraction of the interstellar silicates is 0.2% (+/- 0.2%) by mass. This is much lower than the degree of crystallinity observed in silicates in the circumstellar environment of evolved stars, the main contributors of dust to the ISM. There are two possible explanations for this discrepancy. First, an amorphization process occurs in the ISM on a time scale significantly shorter than the destruction time scale, possibly caused by particle bombardment by heavyweight ions. Second, we consider the possibility that the crystalline silicates in stellar ejecta are diluted by an additional source of amorphous silicates, in particular supernovae.Comment: 33 pages, 6 figures, accepted for publication by Ap

    Numerical simulation of bar and island morphodynamics in anabranching mega-rivers

    Get PDF
    Onlineopen article ©2013 American Geophysical Union.Bar and island morphodynamics in the world's largest anabranching rivers are investigated using a new numerical model of hydrodynamics, sediment transport, bank erosion, and floodplain development, operating over periods of several hundred years. Simulated channel morphology is compared to that of natural rivers and shown to be realistic, both in terms of the statistical characteristics of channel width, depth, and bar shape distributions, and mechanisms of unit bar, compound bar, and island evolution. Results demonstrate that bar and island stability may be sensitive to hydrologic regime, because greater variability in flood magnitude encourages the formation of emergent bars that can be stabilized by vegetation colonization. Simulations illustrate a range of mechanisms of unit bar generation that are linked to local bed or bank instabilities. This link may explain the reduced frequency of unit bars observed in some large anabranching rivers that are characterized by stable vegetated islands and slow rates of channel change. Model results suggest that the degree to which sand-sized bed material is carried in suspension likely represents an important control on bar morphodynamics and channel network evolution, because of its influence on sand transport direction. Consequently, differences in the partitioning of the total sand load between bed load and suspension may provide a partial explanation for contrasting styles of anabranching in the world's largest sand-bed rivers. These results highlight a need for spatially-distributed flow and sediment transport data sets from large rivers, in order to support improved parameterizations of sand transport mechanics in morphodynamic models.Natural Environment Research Council (NERC). Grant Numbers: NE/I023228/1, NE/E016022/

    An overview of the first 5 years of the ENIGMA obsessive–compulsive disorder working group: The power of worldwide collaboration

    No full text
    Abstract Neuroimaging has played an important part in advancing our understanding of the neurobiology of obsessive?compulsive disorder (OCD). At the same time, neuroimaging studies of OCD have had notable limitations, including reliance on relatively small samples. International collaborative efforts to increase statistical power by combining samples from across sites have been bolstered by the ENIGMA consortium; this provides specific technical expertise for conducting multi-site analyses, as well as access to a collaborative community of neuroimaging scientists. In this article, we outline the background to, development of, and initial findings from ENIGMA's OCD working group, which currently consists of 47 samples from 34 institutes in 15 countries on 5 continents, with a total sample of 2,323 OCD patients and 2,325 healthy controls. Initial work has focused on studies of cortical thickness and subcortical volumes, structural connectivity, and brain lateralization in children, adolescents and adults with OCD, also including the study on the commonalities and distinctions across different neurodevelopment disorders. Additional work is ongoing, employing machine learning techniques. Findings to date have contributed to the development of neurobiological models of OCD, have provided an important model of global scientific collaboration, and have had a number of clinical implications. Importantly, our work has shed new light on questions about whether structural and functional alterations found in OCD reflect neurodevelopmental changes, effects of the disease process, or medication impacts. We conclude with a summary of ongoing work by ENIGMA-OCD, and a consideration of future directions for neuroimaging research on OCD within and beyond ENIGMA

    From DNA sequence to application: possibilities and complications

    Get PDF
    The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems. The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons. Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.

    The first and second data releases of the Kilo-Degree Survey

    Get PDF
    Context. The Kilo-Degree Survey (KiDS) is an optical wide-field imaging survey carried out with the VLT Survey Telescope and the OmegaCAM camera. KiDS will image 1500 square degrees in four filters (ugri), and together with its near-infrared counterpart VIKING will produce deep photometry in nine bands. Designed for weak lensing shape and photometric redshift measurements, its core science driver is mapping the large-scale matter distribution in the Universe back to a redshift of ~0.5. Secondary science cases include galaxy evolution, Milky Way structure, and the detection of high-redshift clusters and quasars. Aims. KiDS is an ESO Public Survey and dedicated to serving the astronomical community with high-quality data products derived from the survey data. Public data releases, the first two of which are presented here, are crucial for enabling independent confirmation of the survey’s scientific value. The achieved data quality and initial scientific utilization are reviewed in order to validate the survey data. Methods. A dedicated pipeline and data management system based on ASTRO-WISE, combined with newly developed masking and source classification tools, is used for the production of the data products described here. Science projects based on these data products and preliminary results are outlined. Results. For 148 survey tiles (≈160 sq.deg.) stacked ugri images have been released, accompanied by weight maps, masks, source lists, and a multi-band source catalogue. Limiting magnitudes are typically 24.3, 25.1, 24.9, 23.8 (5σ in a 2′′ aperture) in ugri, respectively, and the typical r-band PSF size is less than 0.7′′. The photometry prior to global homogenization is stable at the ~2% (4%) level in gri (u) with some outliers due to non-photometric conditions, while the astrometry shows a typical 2D rms of 0.03′′. Early scientific results include the detection of nine high-z QSOs, fifteen candidate strong gravitational lenses, high-quality photometric redshifts and structural parameters for hundreds of thousands of galaxies

    GOBLET: the Global Organisation for Bioinformatics Learning, Education and Training

    Get PDF
    In recent years, high-throughput technologies have brought big data to the life sciences. The march of progress has been rapid, leaving in its wake a demand for courses in data analysis, data stewardship, computing fundamentals, etc., a need that universities have not yet been able to satisfy--paradoxically, many are actually closing "niche" bioinformatics courses at a time of critical need. The impact of this is being felt across continents, as many students and early-stage researchers are being left without appropriate skills to manage, analyse, and interpret their data with confidence. This situation has galvanised a group of scientists to address the problems on an international scale. For the first time, bioinformatics educators and trainers across the globe have come together to address common needs, rising above institutional and international boundaries to cooperate in sharing bioinformatics training expertise, experience, and resources, aiming to put ad hoc training practices on a more professional footing for the benefit of all
    corecore