3 research outputs found

    Evidence for Coexistence of Bulk Superconductivity and Itinerant Antiferromagnetism in the Heavy Fermion System CeCo(In1x_{1-x}Cdx_x)5_5

    Full text link
    In the generic phase diagram of heavy fermion systems, tuning an external parameter such as hydrostatic or chemical pressure modifies the superconducting transition temperature. The superconducting phase forms a dome in the temperature-tuning parameter phase diagram, which is associated with a maximum of the superconducting pairing interaction. Proximity to antiferromagnetism suggests a relation between the disappearance of antiferromagnetic order and superconductivity. We combine muon spin rotation, neutron scattering, and x-ray absorption spectroscopy techniques to gain access to the magnetic and electronic structure of CeCo(In1x_{1-x}Cdx_x)5_5 at different time scales. Different magnetic structures are obtained that indicate a magnetic order of itinerant character, coexisting with bulk superconductivity. The suppression of the antiferromagnetic order appears to be driven by a modification of the bandwidth/carrier concentration, implying that the electronic structure and consequently the interplay of superconductivity and magnetism is strongly affected by hydrostatic and chemical pressure.Comment: Article + Supplementary information 33 pages, 13 figure

    Muon spin rotation, relaxation, and resonance: applications to condensed matter

    No full text
    Intended for graduate students and researchers who plan to use the muon spin rotation and relaxation techniques. A comprehensive discussion of the information extracted from measurements on magnetic and superconductor materials. The muonium centres as well as the muon and muonium diffusion in materials are discussed
    corecore