14 research outputs found

    ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function

    Get PDF
    Mutations in TANK binding kinase 1 (TBK1) have been linked to amyotrophic lateral sclerosis. Some TBK1 variants are nonsense and are predicted to cause disease through haploinsufficiency; however, many other mutations are missense with unknown functional effects. We exome sequenced 699 familial amyotrophic lateral sclerosis patients and identified 16 TBK1 novel or extremely rare protein-changing variants. We characterized a subset of these: p.G217R, p.R357X, and p.C471Y. Here, we show that the p.R357X and p.G217R both abolish the ability of TBK1 to phosphorylate 2 of its kinase targets, IRF3 and optineurin, and to undergo phosphorylation. They both inhibit binding to optineurin and the p.G217R, within the TBK1 kinase domain, reduces homodimerization, essential for TBK1 activation and function. Finally, we show that the proportion of TBK1 that is active (phosphorylated) is reduced in 5 lymphoblastoid cell lines derived from patients harboring heterozygous missense or in-frame deletion TBK1 mutations. We conclude that missense mutations in functional domains of TBK1 impair the binding and phosphorylation of its normal targets, implicating a common loss of function mechanism, analogous to truncation mutations

    ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function

    Get PDF
    Mutations in TBK1 have been linked to amyotrophic lateral sclerosis (ALS). Some TBK1 variants are nonsense and are predicted to cause disease through haploinsufficiency, however many other mutations are missense with unknown functional effect. We exome sequenced 699 familial ALS patients and identified 16 TBK1 novel or extremely rare protein changing variants. We characterised a subset of these: p.G217R, p.R357X and p.C471Y. Here we show that the p.R357X and p.G217R both abolish the ability of TBK1 to phosphorylate two of its kinase targets, IRF3 and OPTN and to undergo phosphorylation. They both inhibit binding to OPTN and the p.G217R, within the TBK1 kinase domain, reduces homodimerisation, essential for TBK1 activation and function. Lastly, we show that the proportion TBK1 that is active (phosphorylated) is reduced in five lymphoblastoid cell lines derived from patients harbouring heterozygous missense or in-frame deletion TBK1 mutations. We conclude that missense mutations in functional domains of TBK1 impair the binding and phosphorylation of its normal targets, implicating a common loss of function mechanism, analogous to truncation mutations

    Gut microbiota signatures in cystic fibrosis: Loss of host CFTR function drives the microbiota enterophenotype

    No full text
    Background Cystic fibrosis (CF) is a disorder affecting the respiratory, digestive, reproductive systems and sweat glands. This lethal hereditary disease has known or suspected links to the dysbio- sis gut microbiota. High-throughput meta-omics-based approaches may assist in unveiling this complex network of symbiosis modifications. Objectives The aim of this study was to provide a predictive and functional model of the gut microbiota enterophenotype of pediatric patients affected by CF under clinical stability. Methods Thirty-one fecal samples were collected from CF patients and healthy children (HC) (age range, 1–6 years) and analysed using targeted-metagenomics and metabolomics to charac- terize the ecology and metabolism of CF-linked gut microbiota. The multidimensional data were low fused and processed by chemometric classification analysis. Results The fused metagenomics and metabolomics based gut microbiota profile was characterized by a high abundance of Propionibacterium, Staphylococcus and Clostridiaceae, including Clostridium difficile, and a low abundance of Eggerthella, Eubacterium, Ruminococcus, Dorea, Faecalibacterium prausnitzii, and Lachnospiraceae, associated with overexpression of 4-aminobutyrate (GABA), choline, ethanol, propylbutyrate, and pyridine and low levels of sarcosine, 4-methylphenol, uracil, glucose, acetate, phenol, benzaldehyde, and methylace- tate. The CF gut microbiota pattern revealed an enterophenotype intrinsically linked to dis- ease, regardless of age, and with dysbiosis uninduced by reduced pancreatic function and only partially related to oral antibiotic administration or lung colonization/infection. Conclusions All together, the results obtained suggest that the gut microbiota enterophenotypes of CF, together with endogenous and bacterial CF biomarkers, are direct expression of functional alterations at the intestinal level. Hence, it’s possible to infer that CFTR impairment causes the gut ecosystem imbalance.This new understanding of CF host-gut microbiota interac- tions may be helpful to rationalize novel clinical interventions to improve the affected chil- dren’s nutritional status and intestinal function

    A recessive S174X mutation in Optineurin causes amyotrophic lateral sclerosis through a loss of function via allele-specific nonsense-mediated decay

    No full text
    Loss of function (LoF) mutations in Optineurin can cause recessive amyotrophic lateral sclerosis (ALS) with some heterozygous LoF mutations associated with dominant ALS. The molecular mechanisms underlying the variable inheritance pattern associated with OPTN mutations have remained elusive. We identified that affected members of a consanguineous Middle Eastern ALS kindred possessed a novel homozygous p.S174X OPTN mutation. Analysis of these primary fibroblast lines from family members identified that the p.S174X mutation reduces OPTN mRNA expression in an allele-dependent fashion by nonsense mediated decay. Western blotting correlated a reduced expression in heterozygote carriers but a complete absence of OPTN protein in the homozygous carrier. This data suggests that the p.S174X truncation mutation causes recessive ALS through LoF. However, functional analysis detected a significant increase in mitophagy markers TOM20 and COXIV, and higher rates of mitochondrial respiration and ATP levels in heterozygous carriers only. This suggests that heterozygous LoF OPTN mutations may not be causative in a Mendelian manner but may potentially behave as contributory ALS risk factors

    Therapeutic Delivery of miR-148a Suppresses Ventricular Dilation in Heart Failure

    Get PDF
    Heart failure is preceded by ventricular remodeling, changes in left ventricular mass, and myocardial volume after alterations in loading conditions. Concentric hypertrophy arises after pressure overload, involves wall thickening, and forms a substrate for diastolic dysfunction. Eccentric hypertrophy develops in volume overload conditions and leads wall thinning, chamber dilation, and reduced ejection fraction. The molecular events underlying these distinct forms of cardiac remodeling are poorly understood. Here, we demonstrate that miR-148a expression changes dynamically in distinct subtypes of heart failure: while it is elevated in concentric hypertrophy, it decreased in dilated cardiomyopathy. In line, antagomir-mediated silencing of miR-148a caused wall thinning, chamber dilation, increased left ventricle volume, and reduced ejection fraction. Additionally, adeno-associated viral delivery of miR-148a protected the mouse heart from pressure-overload-induced systolic dysfunction by preventing the transition of concentric hypertrophic remodeling toward dilation. Mechanistically, miR-148a targets the cytokine co-receptor glycoprotein 130 (gp130) and connects cardiomyocyte responsiveness to extracellular cytokines by modulating the Stat3 signaling. These findings show the ability of miR-148a to prevent the transition of pressure-overload induced concentric hypertrophic remodeling toward eccentric hypertrophy and dilated cardiomyopathy and provide evidence for the existence of separate molecular programs inducing distinct forms of myocardial remodeling. Raso et al. show that miR-148a is elevated in concentric hypertrophy and decreased in dilated cardiomyopathy. Adeno-associated viral delivery of miR-148a protects the mouse heart from cardiac dilation. Mechanistically, miR-148a regulates the sensitivity of the heart to extracellular cytokines

    Tropism of SARS-CoV-2 for human cortical astrocytes.

    No full text
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. Neurological symptoms, which range in severity, accompany as many as one-third of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized stem-cell-derived cortical organoids as well as primary human cortical tissue, both from developmental and adult stages. We find significant and predominant infection in cortical astrocytes in both primary tissue and organoid cultures, with minimal infection of other cortical populations. Infected and bystander astrocytes have a corresponding increase in inflammatory gene expression, reactivity characteristics, increased cytokine and growth factor signaling, and cellular stress. Although human cortical cells, particularly astrocytes, have no observable ACE2 expression, we find high levels of coronavirus coreceptors in infected astrocytes, including CD147 and DPP4. Decreasing coreceptor abundance and activity reduces overall infection rate, and increasing expression is sufficient to promote infection. Thus, we find tropism of SARS-CoV-2 for human astrocytes resulting in inflammatory gliosis-type injury that is dependent on coronavirus coreceptors

    Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder. We screened 751 familial ALS patient whole-exome sequences and identified six mutations including p.D40G in the gene in 13 individuals. The p.D40G mutation was absent from 70,000 control whole-exome sequences. This mutation segregated with disease in two kindreds and was present in another two unrelated cases ( = 0.0102), and all mutation carriers shared a common founder haplotype. Annexin A11-positive protein aggregates were abundant in spinal cord motor neurons and hippocampal neuronal axons in an ALS patient carrying the p.D40G mutation. Transfected human embryonic kidney cells expressing with the p.D40G mutation and other N-terminal mutations showed altered binding to calcyclin, and the p.R235Q mutant protein formed insoluble aggregates. We conclude that mutations in are associated with ALS and implicate defective intracellular protein trafficking in disease pathogenesis
    corecore