6,426 research outputs found

    Nanostructured Chitosan-Based Biomaterials for Sustained and Colon-Specific Resveratrol Release

    Get PDF
    In the present work, we demonstrate the preparation of chitosan-based composites as vehicles of the natural occurring multi-drug resveratrol (RES). Such systems are endowed with potential therapeutic effects on inflammatory bowel diseases (IBD), such as Crohn’s disease (CD) and ulcerative colitis, through the sustained colonic release of RES from long-lasting mucoadhesive drug depots. The loading of RES into nanoparticles (NPs) was optimized regarding two independent variables: RES/polymer ratio, and temperature. Twenty experiments were carried out and a Box–Behnken experimental design was used to evaluate the significance of these independent variables related to encapsulation efficiency (EE). The enhanced RES EE values were achieved in 24 h at 39 °C and at RES/polymer ratio of 0.75:1 w/w. Sizes and polydispersities of the optimized NPs were studied by dynamic light scattering (DLS). Chitosan (CTS) dispersions containing the RES-loaded NPs were ionically gelled with tricarballylic acid to yield CTS-NPs composites. Macro- and microscopic features (morphology and porosity studied by SEM and spreadability), thermal stability (studied by TGA), and release kinetics of the RES-loaded CTS-NPs were investigated. Release patterns in simulated colon conditions for 48 h displayed significant differences between the NPs (final cumulative drug release: 79–81%), and the CTS-NPs composites (29–34%)

    Quasi-Lie schemes and Emden--Fowler equations

    Full text link
    The recently developed theory of quasi-Lie schemes is studied and applied to investigate several equations of Emden type and a scheme to deal with them and some of their generalisations is given. As a first result we obtain t-dependent constants of the motion for particular instances of Emden equations by means of some of their particular solutions. Previously known results are recovered from this new perspective. Finally some t-dependent constants of the motion for equations of Emden type satisfying certain conditions are recovered

    Accretion and photodesorption of CO ice as a function of the incident angle of deposition

    Get PDF
    Non-thermal desorption of inter- and circum-stellar ice mantles on dust grains, in particular ultraviolet photon-induced desorption, has gained importance in recent years. These processes may account for the observed gas phase abundances of molecules like CO toward cold interstellar clouds. Ice mantle growth results from gas molecules impinging on the dust from all directions and incidence angles. Nevertheless, the effect of the incident angle for deposition on ice photo-desorption rate has not been studied. This work explores the impact on the accretion and photodesorption rates of the incidence angle of CO gas molecules with the cold surface during deposition of a CO ice layer. Infrared spectroscopy monitored CO ice upon deposition at different angles, ultraviolet-irradiation, and subsequent warm-up. Vacuum-ultraviolet spectroscopy and a Ni-mesh measured the emission of the ultraviolet lamp. Molecules ejected from the ice to the gas during irradiation or warm-up were characterized by a quadrupole mass spectrometer. The photodesorption rate of CO ice deposited at 11 K and different incident angles was rather stable between 0 and 45∘^{\circ}. A maximum in the CO photodesorption rate appeared around 70∘^{\circ}-incidence deposition angle. The same deposition angle leads to the maximum surface area of water ice. Although this study of the surface area could not be performed for CO ice, the similar angle dependence in the photodesorption and the ice surface area suggests that they are closely related. Further evidence for a dependence of CO ice morphology on deposition angle is provided by thermal desorption of CO ice experiments

    Quantum Lie systems and integrability conditions

    Full text link
    The theory of Lie systems has recently been applied to Quantum Mechanics and additionally some integrability conditions for Lie systems of differential equations have also recently been analysed from a geometric perspective. In this paper we use both developments to obtain a geometric theory of integrability in Quantum Mechanics and we use it to provide a series of non-trivial integrable quantum mechanical models and to recover some known results from our unifying point of view
    • …
    corecore