7,732 research outputs found

    Measure Problem for Eternal and Non-Eternal Inflation

    Full text link
    We study various probability measures for eternal inflation by applying their regularization prescriptions to models where inflation is not eternal. For simplicity we work with a toy model describing inflation that can interpolate between eternal and non-eternal inflation by continuous variation of a parameter. We investigate whether the predictions of four different measures (proper time, scale factor cutoff, stationary and causal {diamond}) change continuously with the change of this parameter. We will show that {only} for the stationary measure the predictions change continuously. For the proper-time and the scale factor cutoff, the predictions are strongly discontinuous. For the causal diamond measure, the predictions are continuous only if the stage of the slow-roll inflation is sufficiently long.Comment: 9 pages, 4 figure

    An efficient, economical slow-freezing method for large-scale human embryonic stem cell banking

    Get PDF
    Human embryonic stem cells (hESCs) are one of the most interesting cell types for tissue engineering, cell therapy, basic scientific research, and drug screening. Fast advancement in these areas requires the availability of large amounts of safe and well-characterized hESCs from hESC banks. Therefore, optimized freezing protocols, allowing the cryopreservation of large amounts of hESC without direct contact with liquid nitrogen, need to be established. In this study, 6 different cryoprotector combinations [dimethylsulfoxide (DMSO), ethylene glycol, and hydroxyethylstarch (HES)] combined with 2 different application methods were screened with the VUB01 cell line, to establish a new slow-freezing protocol with high recovery rates and a good expansion capacity. Our best conditions were confirmed in 4 other hESC lines: H1, H9, 181, and UGent2. To our knowledge, this is the first time that HES is evaluated as a cryoprotector for hESCs. The use of 5% DMSO + 5% HES combined with a new detachment protocol leads to efficient hESC cryopreservation. This protocol involves treating the hESC colonies with cell dissociation solution, a mild dissociation solution uncommonly used for hESC culture. A recovery ratio ranging from 45.5% to 168.2% was obtained, and these were significantly different from the other tested conditions (Student's t-test, P < 0.05). The cryopreserved hESCs were morphologically comparable to control cells, exhibited a good expansion profile, were positive for pluripotent expression markers, and could still differentiate into the 3 germ layers. This new protocol allows efficient and economical hESC cryopreservation, ideal for hESC banking

    Supersymmetric Inflation with the Ordinary Higgs?

    Full text link
    We consider a model of D-term inflation in which the inflaton coincides with the standard Higgs doublet. Non-renormalizable terms are controlled by a discrete R-symmetry of the superpotential. We consider radiative corrections to the scalar potential and find that Higgs inflation in the slow-roll approximation is viable and consistent with CMB data, although with a rather large value of the non-renormalizable coupling involved.Comment: 7 pages, 1 figure, published version, comments and reference added, typos and factor of 2 corrected

    Relaxing the Cosmological Moduli Problem

    Get PDF
    Typically the moduli fields acquire mass m =C H in the early universe, which shifts the position of the minimum of their effective potential and leads to an excessively large energy density of the oscillating moduli fields at the later stages of the evolution of the universe. This constitutes the cosmological moduli problem, or Polonyi field problem. We show that the cosmological moduli problem can be solved or at least significantly relaxed in the theories in which C >> 1, as well as in some models with C << 1.Comment: 9 pages, 3 Postscript figure

    Solving the Cosmological Moduli Problem with Weak Scale Inflation

    Get PDF
    Many models of supersymmetry breaking involve particles with weak scale mass and Planck mass suppressed couplings. Coherent production of such particles in the early universe destroys the successful predictions of nucleosynthesis. We show that this problem may be solved by a brief period of weak scale inflation. Furthermore the inflaton potential for such an inflation naturally arises from the same assumptions which lead to the cosmological problem. Successful baryogenesis and preservation of density fluctuations for large scale structure formation are also possible in this scenario.Comment: 21 pages, MIT-CTP-2331, NSF-ITP-94-70, SCIPP 94-16, uses phyzz

    Estimating the level of carbamoylated plasma non-high-density lipoproteins using infrared spectroscopy

    Get PDF
    Background: The increased cardiovascular morbidity and mortality observed in chronic kidney disease (CKD) patients can be partly explained by the presence of carbamoylated lipoproteins. Lipid profiles can be determined with infrared spectroscopy. In this paper, the effects of carbamoylation on spectral changes of non-high-density lipoproteins (non-HDL) were studied. Methods: In the present study, fasting serum samples were obtained from 84 CKD patients (CKD stage 3-5: n = 37 and CKD stage 5d (hemodialysis): n = 47) and from 45 healthy subjects. In vitro carbamoylation of serum lipoproteins from healthy subjects was performed using increasing concentrations of potassium cyanate. Lipoprotein-containing pellets were isolated by precipitation of non-HDL. The amount of carbamoylated serum non-HDL was estimated using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, followed by soft independent modelling by class analogy analysis. Results: Carbamoylation resulted in a small increase of the amide I band (1714-1589 cm(-1)) of the infrared spectroscopy (IR) spectrum. A significant difference in the amide II/amide I area under the curves (AUC) ratio was observed between healthy subjects and CKD patients, as well as between the two CKD groups (non-dialysis versus hemodialysis patients). Conclusions: ATR-FTIR spectroscopy can be considered as a novel method to detect non-HDL carbamoylation

    D-Term Inflation

    Get PDF
    We show that inflation which is dominated by the D-term density avoids the `slow-roll' problem of inflation in supergravity. Such an inflationary scenario can naturally emerge in theories with non-anomalous or anomalous U(1) gauge symmetry. In the latter case the scale of inflation is fixed by the Green--Schwarz mechanism of anomaly cancellation. The crucial point is that the (super)gravity-mediated curvature of all the scalar fields (and, in particular, of the inflaton), which in the standard F-dominated case is of the order of the Hubble parameter, is absent in the D-term inflation case. The curvature of moduli and of all other flat directions during such an inflation crucially depends on their gauge charges.Comment: 10 pages, revtex, no figure
    corecore